View source on GitHub
|
Clips tensor values to a maximum L2-norm.
tf.clip_by_norm(
t, clip_norm, axes=None, name=None
)
Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm,
along the dimensions given in axes. Specifically, in the default case
where all dimensions are used for calculation, if the L2-norm of t is
already less than or equal to clip_norm, then t is not modified. If
the L2-norm is greater than clip_norm, then this operation returns a
tensor of the same type and shape as t with its values set to:
t * clip_norm / l2norm(t)
In this case, the L2-norm of the output tensor is clip_norm.
As another example, if t is a matrix and axes == [1], then each row
of the output will have L2-norm less than or equal to clip_norm. If
axes == [0] instead, each column of the output will be clipped.
Code example:
some_nums = tf.constant([[1, 2, 3, 4, 5]], dtype=tf.float32)tf.clip_by_norm(some_nums, 2.0).numpy()array([[0.26967996, 0.5393599 , 0.80903983, 1.0787199 , 1.3483998 ]],dtype=float32)
This operation is typically used to clip gradients before applying them with an optimizer. Most gradient data is a collection of different shaped tensors for different parts of the model. Thus, this is a common usage:
# Get your gradients after training
loss_value, grads = grad(model, features, labels)
# Apply some clipping
grads = [tf.clip_by_norm(g, norm)
for g in grads]
# Continue on with training
optimizer.apply_gradients(grads)
Returns | |
|---|---|
A clipped Tensor or IndexedSlices.
|
Raises | |
|---|---|
ValueError
|
If the clip_norm tensor is not a 0-D scalar tensor. |
TypeError
|
If dtype of the input is not a floating point or complex type. |
View source on GitHub