tf.distribute.experimental.CommunicationOptions
Stay organized with collections
Save and categorize content based on your preferences.
Options for cross device communications like All-reduce.
tf.distribute.experimental.CommunicationOptions(
bytes_per_pack=0,
timeout_seconds=None,
implementation=tf.distribute.experimental.CollectiveCommunication.AUTO
)
This can be passed to methods like
tf.distribute.get_replica_context().all_reduce()
to optimize collective
operation performance. Note that these are only hints, which may or may not
change the actual behavior. Some options only apply to certain strategy and
are ignored by others.
One common optimization is to break gradients all-reduce into multiple packs
so that weight updates can overlap with gradient all-reduce.
Examples:
options = tf.distribute.experimental.CommunicationOptions(
bytes_per_pack=50 * 1024 * 1024,
timeout_seconds=120.0,
implementation=tf.distribute.experimental.CommunicationImplementation.NCCL
)
grads = tf.distribute.get_replica_context().all_reduce(
'sum', grads, options=options)
optimizer.apply_gradients(zip(grads, vars),
experimental_aggregate_gradients=False)
Args |
bytes_per_pack
|
a non-negative integer. Breaks collective operations into
packs of certain size. If it's zero, the value is determined
automatically. This hint is respected by all multi-replica strategies
except TPUStrategy .
|
timeout_seconds
|
a float or None, timeout in seconds. If not None, the
collective raises tf.errors.DeadlineExceededError if it takes longer
than this timeout. Zero disables timeout. This can be useful when
debugging hanging issues. This should only be used for debugging since
it creates a new thread for each collective, i.e. an overhead of
timeout_seconds * num_collectives_per_second more threads. This only
works for tf.distribute.experimental.MultiWorkerMirroredStrategy .
|
implementation
|
a
tf.distribute.experimental.CommunicationImplementation . This is a hint
on the preferred communication implementation. Possible values include
AUTO , RING , and NCCL . NCCL is generally more performant for GPU,
but doesn't work for CPU. This only works for
tf.distribute.experimental.MultiWorkerMirroredStrategy .
|
Raises |
ValueError
|
When arguments have invalid value.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.distribute.experimental.CommunicationOptions\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.13.1/tensorflow/python/distribute/collective_util.py#L50-L114) |\n\nOptions for cross device communications like All-reduce.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.distribute.experimental.CommunicationOptions`](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/CommunicationOptions)\n\n\u003cbr /\u003e\n\n tf.distribute.experimental.CommunicationOptions(\n bytes_per_pack=0,\n timeout_seconds=None,\n implementation=../../../tf/distribute/experimental/CommunicationImplementation#AUTO\n )\n\nThis can be passed to methods like\n`tf.distribute.get_replica_context().all_reduce()` to optimize collective\noperation performance. Note that these are only hints, which may or may not\nchange the actual behavior. Some options only apply to certain strategy and\nare ignored by others.\n\nOne common optimization is to break gradients all-reduce into multiple packs\nso that weight updates can overlap with gradient all-reduce.\n\n#### Examples:\n\n options = tf.distribute.experimental.CommunicationOptions(\n bytes_per_pack=50 * 1024 * 1024,\n timeout_seconds=120.0,\n implementation=tf.distribute.experimental.CommunicationImplementation.NCCL\n )\n grads = tf.distribute.get_replica_context().all_reduce(\n 'sum', grads, options=options)\n optimizer.apply_gradients(zip(grads, vars),\n experimental_aggregate_gradients=False)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `bytes_per_pack` | a non-negative integer. Breaks collective operations into packs of certain size. If it's zero, the value is determined automatically. This hint is respected by all multi-replica strategies except `TPUStrategy`. |\n| `timeout_seconds` | a float or None, timeout in seconds. If not None, the collective raises [`tf.errors.DeadlineExceededError`](../../../tf/errors/DeadlineExceededError) if it takes longer than this timeout. Zero disables timeout. This can be useful when debugging hanging issues. This should only be used for debugging since it creates a new thread for each collective, i.e. an overhead of `timeout_seconds * num_collectives_per_second` more threads. This only works for [`tf.distribute.experimental.MultiWorkerMirroredStrategy`](../../../tf/distribute/experimental/MultiWorkerMirroredStrategy). |\n| `implementation` | a [`tf.distribute.experimental.CommunicationImplementation`](../../../tf/distribute/experimental/CommunicationImplementation). This is a hint on the preferred communication implementation. Possible values include `AUTO`, `RING`, and `NCCL`. NCCL is generally more performant for GPU, but doesn't work for CPU. This only works for [`tf.distribute.experimental.MultiWorkerMirroredStrategy`](../../../tf/distribute/experimental/MultiWorkerMirroredStrategy). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|------------------------------------|\n| `ValueError` | When arguments have invalid value. |\n\n\u003cbr /\u003e"]]