A Tensor, SparseTensor, or dict of string or int to Tensor
or SparseTensor, specifying the features to be passed to the model.
Note: if features passed is not a dict, it will be wrapped in a dict
with a single entry, using 'feature' as the key. Consequently, the
model
must accept a feature dict of the form {'feature': tensor}. You may use
TensorServingInputReceiver if you want the tensor to be passed as is.
receiver_tensors
A Tensor, SparseTensor, or dict of string to Tensor
or SparseTensor, specifying input nodes where this receiver expects to
be fed by default. Typically, this is a single placeholder expecting
serialized tf.Example protos.
receiver_tensors_alternatives
a dict of string to additional groups of
receiver tensors, each of which may be a Tensor, SparseTensor, or dict
of string to Tensor orSparseTensor. These named receiver tensor
alternatives generate additional serving signatures, which may be used to
feed inputs at different points within the input receiver subgraph. A
typical usage is to allow feeding raw feature Tensors downstream of
the tf.parse_example() op. Defaults to None.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.estimator.export.ServingInputReceiver\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/estimator/tree/master/tensorflow_estimator/python/estimator/export/export.py#L108-L162) |\n\nA return type for a serving_input_receiver_fn. (deprecated)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.estimator.export.ServingInputReceiver\\`\n\n\u003cbr /\u003e\n\n tf.estimator.export.ServingInputReceiver(\n features, receiver_tensors, receiver_tensors_alternatives=None\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras instead.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `features` | A `Tensor`, `SparseTensor`, or dict of string or int to `Tensor` or `SparseTensor`, specifying the features to be passed to the model. Note: if `features` passed is not a dict, it will be wrapped in a dict with a single entry, using 'feature' as the key. Consequently, the model must accept a feature dict of the form {'feature': tensor}. You may use `TensorServingInputReceiver` if you want the tensor to be passed as is. |\n| `receiver_tensors` | A `Tensor`, `SparseTensor`, or dict of string to `Tensor` or `SparseTensor`, specifying input nodes where this receiver expects to be fed by default. Typically, this is a single placeholder expecting serialized `tf.Example` protos. |\n| `receiver_tensors_alternatives` | a dict of string to additional groups of receiver tensors, each of which may be a `Tensor`, `SparseTensor`, or dict of string to `Tensor` or`SparseTensor`. These named receiver tensor alternatives generate additional serving signatures, which may be used to feed inputs at different points within the input receiver subgraph. A typical usage is to allow feeding raw feature `Tensor`s *downstream* of the tf.parse_example() op. Defaults to None. |\n\n\u003cbr /\u003e"]]