This is for use with models that expect a single Tensor or SparseTensor
as an input feature, as opposed to a dict of features.
The normal ServingInputReceiver always returns a feature dict, even if it
contains only one entry, and so can be used only with models that accept such
a dict. For models that accept only a single raw feature, the
serving_input_receiver_fn provided to Estimator.export_saved_model()
should return this TensorServingInputReceiver instead. See:
https://github.com/tensorflow/tensorflow/issues/11674
Note that the receiver_tensors and receiver_tensor_alternatives arguments
will be automatically converted to the dict representation in either case,
because the SavedModel format requires each input Tensor to have a name
(provided by the dict key).
Attributes
features
A single Tensor or SparseTensor, representing the feature to
be passed to the model.
receiver_tensors
A Tensor, SparseTensor, or dict of string to Tensor
or SparseTensor, specifying input nodes where this receiver expects to
be fed by default. Typically, this is a single placeholder expecting
serialized tf.Example protos.
receiver_tensors_alternatives
a dict of string to additional groups of
receiver tensors, each of which may be a Tensor, SparseTensor, or dict
of string to Tensor orSparseTensor. These named receiver tensor
alternatives generate additional serving signatures, which may be used to
feed inputs at different points within the input receiver subgraph. A
typical usage is to allow feeding raw feature Tensors downstream of
the tf.parse_example() op. Defaults to None.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.estimator.export.TensorServingInputReceiver\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/estimator/tree/master/tensorflow_estimator/python/estimator/export/export.py#L165-L220) |\n\nA return type for a serving_input_receiver_fn. (deprecated)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.estimator.export.TensorServingInputReceiver\\`\n\n\u003cbr /\u003e\n\n tf.estimator.export.TensorServingInputReceiver(\n features, receiver_tensors, receiver_tensors_alternatives=None\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras instead.\n\nThis is for use with models that expect a single `Tensor` or `SparseTensor`\nas an input feature, as opposed to a dict of features.\n\nThe normal `ServingInputReceiver` always returns a feature dict, even if it\ncontains only one entry, and so can be used only with models that accept such\na dict. For models that accept only a single raw feature, the\n`serving_input_receiver_fn` provided to [`Estimator.export_saved_model()`](../../../tf/compat/v1/estimator/Estimator#export_saved_model)\nshould return this `TensorServingInputReceiver` instead. See:\nhttps://github.com/tensorflow/tensorflow/issues/11674\n\nNote that the receiver_tensors and receiver_tensor_alternatives arguments\nwill be automatically converted to the dict representation in either case,\nbecause the SavedModel format requires each input `Tensor` to have a name\n(provided by the dict key).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `features` | A single `Tensor` or `SparseTensor`, representing the feature to be passed to the model. |\n| `receiver_tensors` | A `Tensor`, `SparseTensor`, or dict of string to `Tensor` or `SparseTensor`, specifying input nodes where this receiver expects to be fed by default. Typically, this is a single placeholder expecting serialized `tf.Example` protos. |\n| `receiver_tensors_alternatives` | a dict of string to additional groups of receiver tensors, each of which may be a `Tensor`, `SparseTensor`, or dict of string to `Tensor` or`SparseTensor`. These named receiver tensor alternatives generate additional serving signatures, which may be used to feed inputs at different points within the input receiver subgraph. A typical usage is to allow feeding raw feature `Tensor`s *downstream* of the tf.parse_example() op. Defaults to None. |\n\n\u003cbr /\u003e"]]