Use this when each of your sparse inputs has both an ID and a value. For
example, if you're representing text documents as a collection of word
frequencies, you can provide 2 parallel sparse input features ('terms' and
'frequencies' below).
This assumes the input dictionary contains a SparseTensor for key
'terms', and a SparseTensor for key 'frequencies'. These 2 tensors must have
the same indices and dense shape.
Args
categorical_column
A CategoricalColumn created by
categorical_column_with_* functions.
weight_feature_key
String key for weight values.
dtype
Type of weights, such as tf.float32. Only float and integer weights
are supported.
Returns
A CategoricalColumn composed of two sparse features: one represents id,
the other represents weight (value) of the id feature in that example.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.feature_column.weighted_categorical_column\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.13.1/tensorflow/python/feature_column/feature_column_v2.py#L1767-L1842) |\n\nApplies weight values to a `CategoricalColumn`. (deprecated)\n| **Warning:** tf.feature_column is not recommended for new code. Instead, feature preprocessing can be done directly using either [Keras preprocessing\n| layers](https://www.tensorflow.org/guide/migrate/migrating_feature_columns) or through the one-stop utility [`tf.keras.utils.FeatureSpace`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/FeatureSpace) built on top of them. See the [migration guide](https://tensorflow.org/guide/migrate) for details.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.feature_column.weighted_categorical_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/weighted_categorical_column)\n\n\u003cbr /\u003e\n\n tf.feature_column.weighted_categorical_column(\n categorical_column,\n weight_feature_key,\n dtype=../../tf/dtypes#float32\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use Keras preprocessing layers instead, either directly or via the [`tf.keras.utils.FeatureSpace`](../../tf/keras/utils/FeatureSpace) utility. Each of `tf.feature_column.*` has a functional equivalent in `tf.keras.layers` for feature preprocessing when training a Keras model.\n\nUse this when each of your sparse inputs has both an ID and a value. For\nexample, if you're representing text documents as a collection of word\nfrequencies, you can provide 2 parallel sparse input features ('terms' and\n'frequencies' below).\n\n#### Example:\n\nInput `tf.Example` objects: \n\n [\n features {\n feature {\n key: \"terms\"\n value {bytes_list {value: \"very\" value: \"model\"} }\n }\n feature {\n key: \"frequencies\"\n value {float_list {value: 0.3 value: 0.1} }\n }\n },\n features {\n feature {\n key: \"terms\"\n value {bytes_list {value: \"when\" value: \"course\" value: \"human\"} }\n }\n feature {\n key: \"frequencies\"\n value {float_list {value: 0.4 value: 0.1 value: 0.2} }\n }\n }\n ]\n\n categorical_column = categorical_column_with_hash_bucket(\n column_name='terms', hash_bucket_size=1000)\n weighted_column = weighted_categorical_column(\n categorical_column=categorical_column, weight_feature_key='frequencies')\n columns = [weighted_column, ...]\n features = tf.io.parse_example(..., features=make_parse_example_spec(columns))\n linear_prediction, _, _ = linear_model(features, columns)\n\nThis assumes the input dictionary contains a `SparseTensor` for key\n'terms', and a `SparseTensor` for key 'frequencies'. These 2 tensors must have\nthe same indices and dense shape.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|----------------------------------------------------------------------------------------------------------|\n| `categorical_column` | A `CategoricalColumn` created by `categorical_column_with_*` functions. |\n| `weight_feature_key` | String key for weight values. |\n| `dtype` | Type of weights, such as [`tf.float32`](../../tf#float32). Only float and integer weights are supported. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `CategoricalColumn` composed of two sparse features: one represents id, the other represents weight (value) of the id feature in that example. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-----------------------------------------|\n| `ValueError` | if `dtype` is not convertible to float. |\n\n\u003cbr /\u003e"]]