View source on GitHub
|
Convert JSON-encoded Example records to binary protocol buffer strings.
tf.io.decode_json_example(
json_examples, name=None
)
This op converts JSON-serialized tf.train.Example (maybe created with
json_format.MessageToJson, following the
standard JSON mapping)
to a binary-serialized tf.train.Example (equivalent to
Example.SerializeToString()) suitable for conversion to tensors with
tf.io.parse_example.
Here is a tf.train.Example proto:
example = tf.train.Example(features=tf.train.Features(feature={"a": tf.train.Feature(int64_list=tf.train.Int64List(value=[1, 1, 3]))}))
Here it is converted to JSON:
from google.protobuf import json_formatexample_json = json_format.MessageToJson(example)print(example_json){"features": {"feature": {"a": {"int64List": {"value": ["1","1","3"]}}}}}
This op converts the above json string to a binary proto:
example_binary = tf.io.decode_json_example(example_json)example_binary.numpy()b'\n\x0f\n\r\n\x01a\x12\x08\x1a\x06\x08\x01\x08\x01\x08\x03'
The OP works on string tensors of andy shape:
tf.io.decode_json_example([[example_json, example_json],[example_json, example_json]]).shape.as_list()[2, 2]
This resulting binary-string is equivalent to Example.SerializeToString(),
and can be converted to Tensors using tf.io.parse_example and related
functions:
tf.io.parse_example(serialized=[example_binary.numpy(),example.SerializeToString()],features = {'a': tf.io.FixedLenFeature(shape=[3], dtype=tf.int64)}){'a': <tf.Tensor: shape=(2, 3), dtype=int64, numpy=array([[1, 1, 3],[1, 1, 3]])>}
Args | |
|---|---|
json_examples
|
A string tensor containing json-serialized tf.Example
protos.
|
name
|
A name for the op. |
Returns | |
|---|---|
A string Tensor containing the binary-serialized tf.Example protos.
|
Raises | |
|---|---|
tf.errors.InvalidArgumentError: If the JSON could not be converted to a
tf.Example
|
View source on GitHub