Applies the Gaussian error linear unit (GELU) activation function.
tf.keras.activations.gelu(
    x, approximate=False
)
Gaussian error linear unit (GELU) computes
x * P(X <= x), where P(X) ~ N(0, 1).
The (GELU) nonlinearity weights inputs by their value, rather than gates
inputs by their sign as in ReLU.
Example:
x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32)
y = tf.keras.activations.gelu(x)
y.numpy()
array([-0.00404951, -0.15865529,  0.        ,  0.8413447 ,  2.9959507 ],
    dtype=float32)
y = tf.keras.activations.gelu(x, approximate=True)
y.numpy()
array([-0.00363752, -0.15880796,  0.        ,  0.841192  ,  2.9963627 ],
    dtype=float32)
| Args | 
|---|
| x | Input tensor. | 
| approximate | A bool, whether to enable approximation. | 
| Returns | 
|---|
| The gaussian error linear activation: 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))ifapproximateisTrueorx * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))),
whereP(X) ~ N(0, 1),
ifapproximateisFalse. |