tf.keras.activations.hard_sigmoid
Stay organized with collections
Save and categorize content based on your preferences.
Hard sigmoid activation function.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.activations.hard_sigmoid`
tf.keras.activations.hard_sigmoid(
x
)
A faster approximation of the sigmoid activation.
Piecewise linear approximation of the sigmoid function.
Ref: 'https://en.wikipedia.org/wiki/Hard_sigmoid'
Example:
a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32)
b = tf.keras.activations.hard_sigmoid(a)
b.numpy()
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
Returns |
The hard sigmoid activation, defined as:
if x < -2.5: return 0
if x > 2.5: return 1
if -2.5 <= x <= 2.5: return 0.2 * x + 0.5
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.activations.hard_sigmoid\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/activations.py#L442-L468) |\n\nHard sigmoid activation function.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.activations.hard_sigmoid\\`\n\n\u003cbr /\u003e\n\n tf.keras.activations.hard_sigmoid(\n x\n )\n\nA faster approximation of the sigmoid activation.\nPiecewise linear approximation of the sigmoid function.\nRef: 'https://en.wikipedia.org/wiki/Hard_sigmoid'\n\n#### Example:\n\n a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32)\n b = tf.keras.activations.hard_sigmoid(a)\n b.numpy()\n array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----|---------------|\n| `x` | Input tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The hard sigmoid activation, defined as: \u003cbr /\u003e - `if x \u003c -2.5: return 0` - `if x \u003e 2.5: return 1` - `if -2.5 \u003c= x \u003c= 2.5: return 0.2 * x + 0.5` ||\n\n\u003cbr /\u003e"]]