tf.keras.activations.sigmoid
Stay organized with collections
Save and categorize content based on your preferences.
Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x))
.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.activations.sigmoid`
tf.keras.activations.sigmoid(
x
)
Applies the sigmoid activation function. For small values (<-5),
sigmoid
returns a value close to zero, and for large values (>5)
the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element Softmax, where the second element is
assumed to be zero. The sigmoid function always returns a value between
0 and 1.
Example:
a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)
b = tf.keras.activations.sigmoid(a)
b.numpy()
array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01,
1.0000000e+00], dtype=float32)
Returns |
Tensor with the sigmoid activation: 1 / (1 + exp(-x)) .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.activations.sigmoid\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/activations.py#L388-L418) |\n\nSigmoid activation function, `sigmoid(x) = 1 / (1 + exp(-x))`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.activations.sigmoid\\`\n\n\u003cbr /\u003e\n\n tf.keras.activations.sigmoid(\n x\n )\n\nApplies the sigmoid activation function. For small values (\\\u003c-5),\n`sigmoid` returns a value close to zero, and for large values (\\\u003e5)\nthe result of the function gets close to 1.\n\nSigmoid is equivalent to a 2-element Softmax, where the second element is\nassumed to be zero. The sigmoid function always returns a value between\n0 and 1.\n\n#### Example:\n\n a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)\n b = tf.keras.activations.sigmoid(a)\n b.numpy()\n array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01,\n 1.0000000e+00], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----|---------------|\n| `x` | Input tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tensor with the sigmoid activation: `1 / (1 + exp(-x))`. ||\n\n\u003cbr /\u003e"]]