tf.keras.applications.mobilenet_v2.MobileNetV2
Stay organized with collections
Save and categorize content based on your preferences.
Instantiates the MobileNetV2 architecture.
tf.keras.applications.mobilenet_v2.MobileNetV2(
input_shape=None,
alpha=1.0,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation='softmax',
**kwargs
)
MobileNetV2 is very similar to the original MobileNet,
except that it uses inverted residual blocks with
bottlenecking features. It has a drastically lower
parameter count than the original MobileNet.
MobileNets support any input size greater
than 32 x 32, with larger image sizes
offering better performance.
Reference:
This function returns a Keras image classification model,
optionally loaded with weights pre-trained on ImageNet.
For image classification use cases, see
this page for detailed examples.
For transfer learning use cases, make sure to read the
guide to transfer learning & fine-tuning.
Args |
input_shape
|
Optional shape tuple, to be specified if you would
like to use a model with an input image resolution that is not
(224, 224, 3).
It should have exactly 3 inputs channels (224, 224, 3).
You can also omit this option if you would like
to infer input_shape from an input_tensor.
If you choose to include both input_tensor and input_shape then
input_shape will be used if they match, if the shapes
do not match then we will throw an error.
E.g. (160, 160, 3) would be one valid value.
|
alpha
|
Float, larger than zero, controls the width of the network. This is
known as the width multiplier in the MobileNetV2 paper, but the name is
kept for consistency with applications.MobileNetV1 model in Keras.
- If
alpha < 1.0, proportionally decreases the number
of filters in each layer.
- If
alpha > 1.0, proportionally increases the number
of filters in each layer.
- If
alpha = 1.0, default number of filters from the paper
are used at each layer.
|
include_top
|
Boolean, whether to include the fully-connected layer at the
top of the network. Defaults to True .
|
weights
|
String, one of None (random initialization), 'imagenet'
(pre-training on ImageNet), or the path to the weights file to be
loaded.
|
input_tensor
|
Optional Keras tensor (i.e. output of layers.Input() )
to use as image input for the model.
|
pooling
|
String, optional pooling mode for feature extraction when
include_top is False .
None means that the output of the model
will be the 4D tensor output of the
last convolutional block.
avg means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
max means that global max pooling will
be applied.
|
classes
|
Optional integer number of classes to classify images into, only
to be specified if include_top is True, and if no weights argument
is specified.
|
classifier_activation
|
A str or callable. The activation function to use
on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top" layer.
When loading pretrained weights, classifier_activation can only
be None or "softmax" .
|
**kwargs
|
For backwards compatibility only.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.applications.mobilenet_v2.MobileNetV2\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/applications/mobilenet_v2.py#L96-L485) |\n\nInstantiates the MobileNetV2 architecture.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.MobileNetV2`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/MobileNetV2)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.applications.MobileNetV2\\`, \\`tf.compat.v1.keras.applications.mobilenet_v2.MobileNetV2\\`\n\n\u003cbr /\u003e\n\n tf.keras.applications.mobilenet_v2.MobileNetV2(\n input_shape=None,\n alpha=1.0,\n include_top=True,\n weights='imagenet',\n input_tensor=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax',\n **kwargs\n )\n\nMobileNetV2 is very similar to the original MobileNet,\nexcept that it uses inverted residual blocks with\nbottlenecking features. It has a drastically lower\nparameter count than the original MobileNet.\nMobileNets support any input size greater\nthan 32 x 32, with larger image sizes\noffering better performance.\n\n#### Reference:\n\n- [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) (CVPR 2018)\n\nThis function returns a Keras image classification model,\noptionally loaded with weights pre-trained on ImageNet.\n\nFor image classification use cases, see\n[this page for detailed examples](https://keras.io/api/applications/#usage-examples-for-image-classification-models).\n\nFor transfer learning use cases, make sure to read the\n[guide to transfer learning \\& fine-tuning](https://keras.io/guides/transfer_learning/).\n| **Note:** each Keras Application expects a specific kind of input preprocessing. For MobileNetV2, call [`tf.keras.applications.mobilenet_v2.preprocess_input`](../../../../tf/keras/applications/mobilenet_v2/preprocess_input) on your inputs before passing them to the model. [`mobilenet_v2.preprocess_input`](../../../../tf/keras/applications/mobilenet_v2/preprocess_input) will scale input pixels between -1 and 1.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_shape` | Optional shape tuple, to be specified if you would like to use a model with an input image resolution that is not (224, 224, 3). It should have exactly 3 inputs channels (224, 224, 3). You can also omit this option if you would like to infer input_shape from an input_tensor. If you choose to include both input_tensor and input_shape then input_shape will be used if they match, if the shapes do not match then we will throw an error. E.g. `(160, 160, 3)` would be one valid value. |\n| `alpha` | Float, larger than zero, controls the width of the network. This is known as the width multiplier in the MobileNetV2 paper, but the name is kept for consistency with `applications.MobileNetV1` model in Keras. \u003cbr /\u003e - If `alpha` \\\u003c 1.0, proportionally decreases the number of filters in each layer. - If `alpha` \\\u003e 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1.0, default number of filters from the paper are used at each layer. |\n| `include_top` | Boolean, whether to include the fully-connected layer at the top of the network. Defaults to `True`. |\n| `weights` | String, one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. |\n| `input_tensor` | Optional Keras tensor (i.e. output of [`layers.Input()`](../../../../tf/keras/Input)) to use as image input for the model. |\n| `pooling` | String, optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | Optional integer number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n| `**kwargs` | For backwards compatibility only. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A [`keras.Model`](../../../../tf/keras/Model) instance. ||\n\n\u003cbr /\u003e"]]