The naming of models is as follows: RegNet<block_type><flops> where
block_type is one of (X, Y) and flops signifies hundred million
floating point operations. For example RegNetY064 corresponds to RegNet with
Y block and 6.4 giga flops (64 hundred million flops).
Args
include_top
Whether to include the fully-connected
layer at the top of the network. Defaults to True.
weights
One of None (random initialization),
"imagenet" (pre-training on ImageNet), or the path to the weights
file to be loaded. Defaults to "imagenet".
input_tensor
Optional Keras tensor
(i.e. output of layers.Input())
to use as image input for the model.
input_shape
Optional shape tuple, only to be specified
if include_top is False.
It should have exactly 3 inputs channels.
pooling
Optional pooling mode for feature extraction
when include_top is False. Defaults to None.
None means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
avg means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
max means that global max pooling will
be applied.
classes
Optional number of classes to classify images
into, only to be specified if include_top is True, and
if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).
classifier_activation
A str or callable. The activation function to use
on the "top" layer. Ignored unless include_top=True. Set
classifier_activation=None to return the logits of the "top" layer.
Defaults to "softmax".
When loading pretrained weights, classifier_activation can only
be None or "softmax".
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.applications.regnet.RegNetX120\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/applications/regnet.py#L1304-L1333) |\n\nInstantiates the RegNetX120 architecture.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.applications.RegNetX120`](https://www.tensorflow.org/api_docs/python/tf/keras/applications/regnet/RegNetX120)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.applications.RegNetX120\\`, \\`tf.compat.v1.keras.applications.regnet.RegNetX120\\`\n\n\u003cbr /\u003e\n\n tf.keras.applications.regnet.RegNetX120(\n model_name='regnetx120',\n include_top=True,\n include_preprocessing=True,\n weights='imagenet',\n input_tensor=None,\n input_shape=None,\n pooling=None,\n classes=1000,\n classifier_activation='softmax'\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Reference --------- ||\n|---|---|\n| \u003cbr /\u003e - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) (CVPR 2020) ||\n\n\u003cbr /\u003e\n\nFor image classification use cases, see\n[this page for detailed examples](https://keras.io/api/applications/#usage-examples-for-image-classification-models).\n\nFor transfer learning use cases, make sure to read the\n[guide to transfer learning \\& fine-tuning](https://keras.io/guides/transfer_learning/).\n| **Note:** Each Keras Application expects a specific kind of input preprocessing. For Regnets, preprocessing is included in the model using a `Rescaling` layer. RegNet models expect their inputs to be float or uint8 tensors of pixels with values in the \\[0-255\\] range.\n\nThe naming of models is as follows: `RegNet\u003cblock_type\u003e\u003cflops\u003e` where\n`block_type` is one of `(X, Y)` and `flops` signifies hundred million\nfloating point operations. For example RegNetY064 corresponds to RegNet with\nY block and 6.4 giga flops (64 hundred million flops).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `include_top` | Whether to include the fully-connected layer at the top of the network. Defaults to True. |\n| `weights` | One of `None` (random initialization), `\"imagenet\"` (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to `\"imagenet\"`. |\n| `input_tensor` | Optional Keras tensor (i.e. output of [`layers.Input()`](../../../../tf/keras/Input)) to use as image input for the model. |\n| `input_shape` | Optional shape tuple, only to be specified if `include_top` is False. It should have exactly 3 inputs channels. |\n| `pooling` | Optional pooling mode for feature extraction when `include_top` is `False`. Defaults to None. \u003cbr /\u003e - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. |\n| `classes` | Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Defaults to 1000 (number of ImageNet classes). |\n| `classifier_activation` | A `str` or callable. The activation function to use on the \"top\" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the \"top\" layer. Defaults to `\"softmax\"`. When loading pretrained weights, `classifier_activation` can only be `None` or `\"softmax\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A [`keras.Model`](../../../../tf/keras/Model) instance. ||\n\n\u003cbr /\u003e"]]