tf.keras.applications.xception.preprocess_input
Stay organized with collections
Save and categorize content based on your preferences.
Preprocesses a tensor or Numpy array encoding a batch of images.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.applications.xception.preprocess_input`
tf.keras.applications.xception.preprocess_input(
x, data_format=None
)
Usage example with applications.MobileNet
:
i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
x = tf.cast(i, tf.float32)
x = tf.keras.applications.mobilenet.preprocess_input(x)
core = tf.keras.applications.MobileNet()
x = core(x)
model = tf.keras.Model(inputs=[i], outputs=[x])
image = tf.image.decode_png(tf.io.read_file('file.png'))
result = model(image)
Args |
x
|
A floating point numpy.array or a tf.Tensor , 3D or 4D with 3 color
channels, with values in the range [0, 255].
The preprocessed data are written over the input data
if the data types are compatible. To avoid this
behaviour, numpy.copy(x) can be used.
|
data_format
|
Optional data format of the image tensor/array. None, means
the global setting tf.keras.backend.image_data_format() is used
(unless you changed it, it uses "channels_last").
Defaults to None .
|
Returns |
Preprocessed numpy.array or a tf.Tensor with type float32 .
The inputs pixel values are scaled between -1 and 1, sample-wise.
|
Raises |
ValueError
|
In case of unknown data_format argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.applications.xception.preprocess_input\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/applications/xception.py#L363-L367) |\n\nPreprocesses a tensor or Numpy array encoding a batch of images.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.applications.xception.preprocess_input\\`\n\n\u003cbr /\u003e\n\n tf.keras.applications.xception.preprocess_input(\n x, data_format=None\n )\n\nUsage example with [`applications.MobileNet`](../../../../tf/keras/applications/mobilenet/MobileNet): \n\n i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)\n x = tf.cast(i, tf.float32)\n x = tf.keras.applications.mobilenet.preprocess_input(x)\n core = tf.keras.applications.MobileNet()\n x = core(x)\n model = tf.keras.Model(inputs=[i], outputs=[x])\n\n image = tf.image.decode_png(tf.io.read_file('file.png'))\n result = model(image)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | A floating point `numpy.array` or a [`tf.Tensor`](../../../../tf/Tensor), 3D or 4D with 3 color channels, with values in the range \\[0, 255\\]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour, `numpy.copy(x)` can be used. |\n| `data_format` | Optional data format of the image tensor/array. None, means the global setting [`tf.keras.backend.image_data_format()`](../../../../tf/keras/backend/image_data_format) is used (unless you changed it, it uses \"channels_last\"). Defaults to `None`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Preprocessed `numpy.array` or a [`tf.Tensor`](../../../../tf/Tensor) with type `float32`. \u003cbr /\u003e The inputs pixel values are scaled between -1 and 1, sample-wise. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------------------|\n| `ValueError` | In case of unknown `data_format` argument. |\n\n\u003cbr /\u003e"]]