1D convolution layer (e.g. temporal convolution).
Inherits From: Layer, Module
tf.keras.layers.Conv1D(
    filters,
    kernel_size,
    strides=1,
    padding='valid',
    data_format='channels_last',
    dilation_rate=1,
    groups=1,
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)
This layer creates a convolution kernel that is convolved
with the layer input over a single spatial (or temporal) dimension
to produce a tensor of outputs.
If use_bias is True, a bias vector is created and added to the outputs.
Finally, if activation is not None,
it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide an input_shape argument
(tuple of integers or None, e.g.
(10, 128) for sequences of 10 vectors of 128-dimensional vectors,
or (None, 128) for variable-length sequences of 128-dimensional vectors.
Examples:
# The inputs are 128-length vectors with 10 timesteps, and the
# batch size is 4.
input_shape = (4, 10, 128)
x = tf.random.normal(input_shape)
y = tf.keras.layers.Conv1D(
32, 3, activation='relu',input_shape=input_shape[1:])(x)
print(y.shape)
(4, 8, 32)
# With extended batch shape [4, 7] (e.g. weather data where batch
# dimensions correspond to spatial location and the third dimension
# corresponds to time.)
input_shape = (4, 7, 10, 128)
x = tf.random.normal(input_shape)
y = tf.keras.layers.Conv1D(
32, 3, activation='relu', input_shape=input_shape[2:])(x)
print(y.shape)
(4, 7, 8, 32)
| Args | 
|---|
| filters | Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of a single integer,
specifying the length of the 1D convolution window. | 
| strides | An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any dilation_ratevalue != 1. | 
| padding | One of "valid","same"or"causal"(case-insensitive)."valid"means no padding."same"results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input."causal"results in causal (dilated) convolutions, e.g.output[t]does not depend oninput[t+1:]. Useful when modeling temporal data
where the model should not violate the temporal order.
See WaveNet: A Generative Model for Raw Audio, section
  2.1. | 
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, width,
channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, width). Note that thechannels_firstformat
is currently not supported by TensorFlow on CPU. | 
| dilation_rate | an integer or tuple/list of a single integer, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_ratevalue != 1 is
incompatible with specifying anystridesvalue != 1. | 
| groups | A positive integer specifying the number of groups in which the
input is split along the channel axis. Each group is convolved
separately with filters / groupsfilters. The output is the
concatenation of all thegroupsresults along the channel axis.
Input channels andfiltersmust both be divisible bygroups. | 
| activation | Activation function to use.
If you don't specify anything, no activation is applied
(see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| kernel_initializer | Initializer for the kernelweights matrix
(seekeras.initializers). Defaults to 'glorot_uniform'. | 
| bias_initializer | Initializer for the bias vector
(see keras.initializers). Defaults to 'zeros'. | 
| kernel_regularizer | Regularizer function applied to
the kernelweights matrix (seekeras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector
(see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to
the output of the layer (its "activation")
(see keras.regularizers). | 
| kernel_constraint | Constraint function applied to the kernel matrix
(see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector
(see keras.constraints). | 
|  | 
|---|
| 3+D tensor with shape: batch_shape + (steps, input_dim) | 
| Output shape | 
|---|
| 3+D tensor with shape: batch_shape + (new_steps, filters)stepsvalue might have changed due to padding or strides. | 
| Returns | 
|---|
| A tensor of rank 3 representing activation(conv1d(inputs, kernel) + bias). | 
| Raises | 
|---|
| ValueError | when both strides > 1anddilation_rate > 1. | 
Methods
convolution_op
View source
convolution_op(
    inputs, kernel
)