Transposed convolution layer (sometimes called Deconvolution).
Inherits From: Conv3D, Layer, Module
tf.keras.layers.Conv3DTranspose(
    filters,
    kernel_size,
    strides=(1, 1, 1),
    padding='valid',
    output_padding=None,
    data_format=None,
    dilation_rate=(1, 1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)
The need for transposed convolutions generally arises
from the desire to use a transformation going in the opposite direction
of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input
while maintaining a connectivity pattern that is compatible with
said convolution.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers or None, does not include the sample axis),
e.g. input_shape=(128, 128, 128, 3) for a 128x128x128 volume with 3
channels if data_format="channels_last".
| Args | 
|---|
| filters | Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of 3 integers, specifying the
depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions. | 
| strides | An integer or tuple/list of 3 integers,
specifying the strides of the convolution along the depth, height
  and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_ratevalue != 1. | 
| padding | one of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input. | 
| output_padding | An integer or tuple/list of 3 integers,
specifying the amount of padding along the depth, height, and
width.
Can be a single integer to specify the same value for all
spatial dimensions.
The amount of output padding along a given dimension must be
lower than the stride along that same dimension.
If set to None(default), the output shape is inferred. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, depth, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, depth, height, width).
When unspecified, usesimage_data_formatvalue found in your Keras
config file at~/.keras/keras.json(if exists) else 'channels_last'.
Defaults to 'channels_last'. | 
| dilation_rate | an integer or tuple/list of 3 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any dilation_ratevalue != 1 is
incompatible with specifying any stride value != 1. | 
| activation | Activation function to use.
If you don't specify anything, no activation is applied
(see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| kernel_initializer | Initializer for the kernelweights matrix
(seekeras.initializers). Defaults to 'glorot_uniform'. | 
| bias_initializer | Initializer for the bias vector
(see keras.initializers). Defaults to 'zeros'. | 
| kernel_regularizer | Regularizer function applied to
the kernelweights matrix
(seekeras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector
(see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to
the output of the layer (its "activation")
(see keras.regularizers). | 
| kernel_constraint | Constraint function applied to the kernel matrix
(see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector
(see keras.constraints). | 
|  | 
|---|
| 5D tensor with shape: (batch_size, channels, depth, rows, cols)if
data_format='channels_first'
or 5D tensor with shape:(batch_size, depth, rows, cols, channels)if
data_format='channels_last'. | 
| Output shape | 
|---|
| 5D tensor with shape: (batch_size, filters, new_depth, new_rows, new_cols)if
  data_format='channels_first'
or 5D tensor with shape:(batch_size, new_depth, new_rows, new_cols, filters)if
  data_format='channels_last'.depthandrowsandcolsvalues might have changed due to padding.
Ifoutput_paddingis specified::new_depth = ((depth - 1) * strides[0] + kernel_size[0] - 2 * padding[0] +
output_padding[0])
new_rows = ((rows - 1) * strides[1] + kernel_size[1] - 2 * padding[1] +
output_padding[1])
new_cols = ((cols - 1) * strides[2] + kernel_size[2] - 2 * padding[2] +
output_padding[2])
 | 
| Returns | 
|---|
| A tensor of rank 5 representing activation(conv3dtranspose(inputs, kernel) + bias). | 
| Raises | 
|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. | 
Methods
convolution_op
View source
convolution_op(
    inputs, kernel
)