tf.keras.layers.Cropping1D
Stay organized with collections
Save and categorize content based on your preferences.
Cropping layer for 1D input (e.g. temporal sequence).
Inherits From: Layer
, Module
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.layers.Cropping1D`
tf.keras.layers.Cropping1D(
cropping=(1, 1), **kwargs
)
It crops along the time dimension (axis 1).
Examples:
input_shape = (2, 3, 2)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[ 0 1]
[ 2 3]
[ 4 5]]
[[ 6 7]
[ 8 9]
[10 11]]]
y = tf.keras.layers.Cropping1D(cropping=1)(x)
print(y)
tf.Tensor(
[[[2 3]]
[[8 9]]], shape=(2, 1, 2), dtype=int64)
Args |
cropping
|
Int or tuple of int (length 2)
How many units should be trimmed off at the beginning and end of
the cropping dimension (axis 1).
If a single int is provided, the same value will be used for both.
|
|
3D tensor with shape (batch_size, axis_to_crop, features)
|
Output shape |
3D tensor with shape (batch_size, cropped_axis, features)
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.layers.Cropping1D\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/layers/reshaping/cropping1d.py#L28-L97) |\n\nCropping layer for 1D input (e.g. temporal sequence).\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.layers.Cropping1D\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.Cropping1D(\n cropping=(1, 1), **kwargs\n )\n\nIt crops along the time dimension (axis 1).\n\n#### Examples:\n\n input_shape = (2, 3, 2)\n x = np.arange(np.prod(input_shape)).reshape(input_shape)\n print(x)\n [[[ 0 1]\n [ 2 3]\n [ 4 5]]\n [[ 6 7]\n [ 8 9]\n [10 11]]]\n y = tf.keras.layers.Cropping1D(cropping=1)(x)\n print(y)\n tf.Tensor(\n [[[2 3]]\n [[8 9]]], shape=(2, 1, 2), dtype=int64)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `cropping` | Int or tuple of int (length 2) How many units should be trimmed off at the beginning and end of the cropping dimension (axis 1). If a single int is provided, the same value will be used for both. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| 3D tensor with shape `(batch_size, axis_to_crop, features)` ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|---|---|\n| 3D tensor with shape `(batch_size, cropped_axis, features)` ||\n\n\u003cbr /\u003e"]]