tf.keras.layers.RandomZoom
Stay organized with collections
Save and categorize content based on your preferences.
A preprocessing layer which randomly zooms images during training.
Inherits From: Layer
, Module
tf.keras.layers.RandomZoom(
height_factor,
width_factor=None,
fill_mode='reflect',
interpolation='bilinear',
seed=None,
fill_value=0.0,
**kwargs
)
This layer will randomly zoom in or out on each axis of an image
independently, filling empty space according to fill_mode
.
Input pixel values can be of any range (e.g. [0., 1.)
or [0, 255]
) and
of integer or floating point dtype.
By default, the layer will output floats.
For an overview and full list of preprocessing layers, see the preprocessing
guide.
Args |
height_factor
|
a float represented as fraction of value,
or a tuple of size 2 representing lower and upper bound
for zooming vertically. When represented as a single float,
this value is used for both the upper and
lower bound. A positive value means zooming out,
while a negative value
means zooming in. For instance, height_factor=(0.2, 0.3)
result in an output zoomed out by a random amount
in the range [+20%, +30%] .
height_factor=(-0.3, -0.2) result in an output zoomed
in by a random amount in the range [+20%, +30%] .
|
width_factor
|
a float represented as fraction of value,
or a tuple of size 2 representing lower and upper bound
for zooming horizontally. When
represented as a single float, this value is used
for both the upper and
lower bound. For instance, width_factor=(0.2, 0.3)
result in an output
zooming out between 20% to 30%.
width_factor=(-0.3, -0.2) result in an
output zooming in between 20% to 30%. None means
i.e., zooming vertical and horizontal directions
by preserving the aspect ratio. Defaults to None .
|
fill_mode
|
Points outside the boundaries of the input are
filled according to the given mode
(one of {"constant", "reflect", "wrap", "nearest"} ).
- reflect:
(d c b a | a b c d | d c b a)
The input is extended by reflecting about
the edge of the last pixel.
- constant:
(k k k k | a b c d | k k k k)
The input is extended by filling all values beyond
the edge with the same constant value k = 0.
- wrap:
(a b c d | a b c d | a b c d) The input is extended by
wrapping around to the opposite edge.
- nearest:
(a a a a | a b c d | d d d d)
The input is extended by the nearest pixel.
|
interpolation
|
Interpolation mode. Supported values: "nearest" ,
"bilinear" .
|
seed
|
Integer. Used to create a random seed.
|
fill_value
|
a float represents the value to be filled outside
the boundaries when fill_mode="constant" .
|
Example:
input_img = np.random.random((32, 224, 224, 3))
layer = tf.keras.layers.RandomZoom(.5, .2)
out_img = layer(input_img)
out_img.shape
TensorShape([32, 224, 224, 3])
|
3D
|
unbatched) or 4D (batched) tensor with shape
(..., height, width, channels) , in "channels_last" format.
|
Output shape |
3D
|
unbatched) or 4D (batched) tensor with shape
(..., height, width, channels) , in "channels_last" format.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.layers.RandomZoom\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/layers/preprocessing/image_preprocessing.py#L1019-L1209) |\n\nA preprocessing layer which randomly zooms images during training.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.experimental.preprocessing.RandomZoom`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomZoom)\n\n\u003cbr /\u003e\n\n tf.keras.layers.RandomZoom(\n height_factor,\n width_factor=None,\n fill_mode='reflect',\n interpolation='bilinear',\n seed=None,\n fill_value=0.0,\n **kwargs\n )\n\nThis layer will randomly zoom in or out on each axis of an image\nindependently, filling empty space according to `fill_mode`.\n\nInput pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and\nof integer or floating point dtype.\nBy default, the layer will output floats.\n\nFor an overview and full list of preprocessing layers, see the preprocessing\n[guide](https://www.tensorflow.org/guide/keras/preprocessing_layers).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `height_factor` | a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming vertically. When represented as a single float, this value is used for both the upper and lower bound. A positive value means zooming out, while a negative value means zooming in. For instance, `height_factor=(0.2, 0.3)` result in an output zoomed out by a random amount in the range `[+20%, +30%]`. `height_factor=(-0.3, -0.2)` result in an output zoomed in by a random amount in the range `[+20%, +30%]`. |\n| `width_factor` | a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming horizontally. When represented as a single float, this value is used for both the upper and lower bound. For instance, `width_factor=(0.2, 0.3)` result in an output zooming out between 20% to 30%. `width_factor=(-0.3, -0.2)` result in an output zooming in between 20% to 30%. `None` means i.e., zooming vertical and horizontal directions by preserving the aspect ratio. Defaults to `None`. |\n| `fill_mode` | Points outside the boundaries of the input are filled according to the given mode (one of `{\"constant\", \"reflect\", \"wrap\", \"nearest\"}`). \u003cbr /\u003e - *reflect* : `(d c b a | a b c d | d c b a)` The input is extended by reflecting about the edge of the last pixel. - *constant* : `(k k k k | a b c d | k k k k)` The input is extended by filling all values beyond the edge with the same constant value k = 0. - *wrap* : `(a b c d | a b c d | a b c d)` The input is extended by wrapping around to the opposite edge. - *nearest* : `(a a a a | a b c d | d d d d)` The input is extended by the nearest pixel. |\n| `interpolation` | Interpolation mode. Supported values: `\"nearest\"`, `\"bilinear\"`. |\n| `seed` | Integer. Used to create a random seed. |\n| `fill_value` | a float represents the value to be filled outside the boundaries when `fill_mode=\"constant\"`. |\n\n#### Example:\n\n input_img = np.random.random((32, 224, 224, 3))\n layer = tf.keras.layers.RandomZoom(.5, .2)\n out_img = layer(input_img)\n out_img.shape\n TensorShape([32, 224, 224, 3])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|------|----------------------------------------------------------------------------------------------------------------------|\n| `3D` | `unbatched) or 4D (batched) tensor with shape` \u003cbr /\u003e `(..., height, width, channels)`, in `\"channels_last\"` format. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|------|----------------------------------------------------------------------------------------------------------------------|\n| `3D` | `unbatched) or 4D (batched) tensor with shape` \u003cbr /\u003e `(..., height, width, channels)`, in `\"channels_last\"` format. |\n\n\u003cbr /\u003e"]]