tf.keras.layers.UpSampling2D
Stay organized with collections
Save and categorize content based on your preferences.
Upsampling layer for 2D inputs.
Inherits From: Layer
, Module
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.layers.UpSampling2D`
tf.keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation='nearest', **kwargs
)
Repeats the rows and columns of the data
by size[0]
and size[1]
respectively.
Examples:
input_shape = (2, 2, 1, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)
print(y)
tf.Tensor(
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)
Args |
size
|
Int, or tuple of 2 integers.
The upsampling factors for rows and columns.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch_size, height, width, channels) while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width) .
When unspecified, uses
image_data_format value found in your Keras config file at
~/.keras/keras.json (if exists) else 'channels_last'.
Defaults to 'channels_last'.
|
interpolation
|
A string, one of "area" , "bicubic" , "bilinear" ,
"gaussian" , "lanczos3" , "lanczos5" , "mitchellcubic" ,
"nearest" .
|
|
4D tensor with shape:
- If
data_format is "channels_last" :
(batch_size, rows, cols, channels)
- If
data_format is "channels_first" :
(batch_size, channels, rows, cols)
|
Output shape |
4D tensor with shape:
- If
data_format is "channels_last" :
(batch_size, upsampled_rows, upsampled_cols, channels)
- If
data_format is "channels_first" :
(batch_size, channels, upsampled_rows, upsampled_cols)
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.layers.UpSampling2D\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/layers/reshaping/up_sampling2d.py#L30-L147) |\n\nUpsampling layer for 2D inputs.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.layers.UpSampling2D\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.UpSampling2D(\n size=(2, 2), data_format=None, interpolation='nearest', **kwargs\n )\n\nRepeats the rows and columns of the data\nby `size[0]` and `size[1]` respectively.\n\n#### Examples:\n\n input_shape = (2, 2, 1, 3)\n x = np.arange(np.prod(input_shape)).reshape(input_shape)\n print(x)\n [[[[ 0 1 2]]\n [[ 3 4 5]]]\n [[[ 6 7 8]]\n [[ 9 10 11]]]]\n y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)\n print(y)\n tf.Tensor(\n [[[[ 0 1 2]\n [ 0 1 2]]\n [[ 3 4 5]\n [ 3 4 5]]]\n [[[ 6 7 8]\n [ 6 7 8]]\n [[ 9 10 11]\n [ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `size` | Int, or tuple of 2 integers. The upsampling factors for rows and columns. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch_size, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch_size, channels, height, width)`. When unspecified, uses `image_data_format` value found in your Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Defaults to 'channels_last'. |\n| `interpolation` | A string, one of `\"area\"`, `\"bicubic\"`, `\"bilinear\"`, `\"gaussian\"`, `\"lanczos3\"`, `\"lanczos5\"`, `\"mitchellcubic\"`, `\"nearest\"`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| 4D tensor with shape: \u003cbr /\u003e - If `data_format` is `\"channels_last\"`: `(batch_size, rows, cols, channels)` - If `data_format` is `\"channels_first\"`: `(batch_size, channels, rows, cols)` ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|---|---|\n| 4D tensor with shape: \u003cbr /\u003e - If `data_format` is `\"channels_last\"`: `(batch_size, upsampled_rows, upsampled_cols, channels)` - If `data_format` is `\"channels_first\"`: `(batch_size, channels, upsampled_rows, upsampled_cols)` ||\n\n\u003cbr /\u003e"]]