|  View source on GitHub | 
Computes the cross-entropy loss between true labels and predicted labels.
Inherits From: Loss
tf.keras.losses.BinaryCrossentropy(
    from_logits=False,
    label_smoothing=0.0,
    axis=-1,
    reduction=losses_utils.ReductionV2.AUTO,
    name='binary_crossentropy'
)
Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:
- y_true(true label): This is either 0 or 1.
- y_pred(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] when- from_logits=True) or a probability (i.e, value in [0., 1.] when- from_logits=False).
Recommended Usage: (set from_logits=True)
With tf.keras API:
model.compile(
  loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
  ....
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)y_true = [0, 1, 0, 0]y_pred = [-18.6, 0.51, 2.94, -12.8]bce = tf.keras.losses.BinaryCrossentropy(from_logits=True)bce(y_true, y_pred).numpy()0.865
# Example 2: (batch_size = 2, number of samples = 4)y_true = [[0, 1], [0, 0]]y_pred = [[-18.6, 0.51], [2.94, -12.8]]# Using default 'auto'/'sum_over_batch_size' reduction type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True)bce(y_true, y_pred).numpy()0.865# Using 'sample_weight' attributebce(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()0.243# Using 'sum' reduction` type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True,reduction=tf.keras.losses.Reduction.SUM)bce(y_true, y_pred).numpy()1.730# Using 'none' reduction type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True,reduction=tf.keras.losses.Reduction.NONE)bce(y_true, y_pred).numpy()array([0.235, 1.496], dtype=float32)
Default Usage: (set from_logits=False)
# Make the following updates to the above "Recommended Usage" section# 1. Set `from_logits=False`tf.keras.losses.BinaryCrossentropy() # OR ...('from_logits=False')# 2. Update `y_pred` to use probabilities instead of logitsy_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]]
| Args | |
|---|---|
| from_logits | Whether to interpret y_predas a tensor of
logit values. By default, we
assume thaty_predcontains probabilities (i.e., values in [0,
1]). | 
| label_smoothing | Float in [0, 1]. When 0, no smoothing occurs. When >
0, we compute the loss between the predicted labels and a smoothed
version of the true labels, where the smoothing squeezes the labels
towards 0.5.  Larger values of label_smoothingcorrespond to
heavier smoothing. | 
| axis | The axis along which to compute crossentropy (the features axis). Defaults to -1. | 
| reduction | Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults toSUM_OVER_BATCH_SIZE. When used under atf.distribute.Strategy, except viaModel.compile()andModel.fit(), usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial
for more details. | 
| name | Name for the op. Defaults to 'binary_crossentropy'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A keras.losses.Lossinstance. | 
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. Ifsample_weightis a tensor of size[batch_size],
then the total loss for each sample of the batch is rescaled by the
corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be
broadcasted to this shape), then each loss element ofy_predis
scaled by the corresponding value ofsample_weight. (Note
ondN-1: all loss functions reduce by 1 dimension, usually
axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually
axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. |