tf.keras.losses.Loss
Stay organized with collections
Save and categorize content based on your preferences.
Loss base class.
tf.keras.losses.Loss(
reduction=losses_utils.ReductionV2.AUTO, name=None
)
To be implemented by subclasses:
call()
: Contains the logic for loss calculation using y_true
,
y_pred
.
Example subclass implementation:
class MeanSquaredError(Loss):
def call(self, y_true, y_pred):
return tf.reduce_mean(tf.math.square(y_pred - y_true), axis=-1)
When using a Loss under a tf.distribute.Strategy
, except passing it
to Model.compile()
for use by Model.fit()
, please use reduction
types 'SUM' or 'NONE', and reduce losses explicitly. Using 'AUTO' or
'SUM_OVER_BATCH_SIZE' will raise an error when calling the Loss object
from a custom training loop or from user-defined code in Layer.call()
.
Please see this custom training
tutorial
for more details on this.
Args |
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO . AUTO indicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults to SUM_OVER_BATCH_SIZE . When used under a
tf.distribute.Strategy , except via Model.compile() and
Model.fit() , using AUTO or SUM_OVER_BATCH_SIZE
will raise an error. Please see this custom training tutorial
for more details.
|
name
|
Optional name for the instance.
|
Methods
call
View source
@abc.abstractmethod
call(
y_true, y_pred
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] , except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
Returns |
Loss values with the shape [batch_size, d0, .. dN-1] .
|
from_config
View source
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
Returns the config dictionary for a Loss
instance.
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] , except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size] ,
then the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is
scaled by the corresponding value of sample_weight . (Note
ondN-1 : all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note
dN-1 because all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.losses.Loss\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L41-L219) |\n\nLoss base class.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.losses.Loss`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/Loss)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.losses.Loss\\`\n\n\u003cbr /\u003e\n\n tf.keras.losses.Loss(\n reduction=losses_utils.ReductionV2.AUTO, name=None\n )\n\nTo be implemented by subclasses:\n\n- `call()`: Contains the logic for loss calculation using `y_true`, `y_pred`.\n\nExample subclass implementation: \n\n class MeanSquaredError(Loss):\n\n def call(self, y_true, y_pred):\n return tf.reduce_mean(tf.math.square(y_pred - y_true), axis=-1)\n\nWhen using a Loss under a [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), except passing it\nto [`Model.compile()`](../../../tf/keras/Model#compile) for use by [`Model.fit()`](../../../tf/keras/Model#fit), please use reduction\ntypes 'SUM' or 'NONE', and reduce losses explicitly. Using 'AUTO' or\n'SUM_OVER_BATCH_SIZE' will raise an error when calling the Loss object\nfrom a custom training loop or from user-defined code in [`Layer.call()`](../../../tf/keras/layers/Layer#call).\nPlease see this custom training\n[tutorial](https://www.tensorflow.org/tutorials/distribute/custom_training)\nfor more details on this.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `reduction` | Type of [`tf.keras.losses.Reduction`](../../../tf/keras/losses/Reduction) to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used under a [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), except via [`Model.compile()`](../../../tf/keras/Model#compile) and [`Model.fit()`](../../../tf/keras/Model#fit), using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training [tutorial](https://www.tensorflow.org/tutorials/distribute/custom_training) for more details. |\n| `name` | Optional name for the instance. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `call`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L180-L194) \n\n @abc.abstractmethod\n call(\n y_true, y_pred\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`, except sparse loss functions such as sparse categorical crossentropy where shape = `[batch_size, d0, .. dN-1]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Loss values with the shape `[batch_size, d0, .. dN-1]`. ||\n\n\u003cbr /\u003e\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L164-L174) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L176-L178) \n\n get_config()\n\nReturns the config dictionary for a `Loss` instance.\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L101-L162) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`, except sparse loss functions such as sparse categorical crossentropy where shape = `[batch_size, d0, .. dN-1]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]