|  View source on GitHub | 
Computes the mean of absolute difference between labels and predictions.
Inherits From: Loss
tf.keras.losses.MeanAbsoluteError(
    reduction=losses_utils.ReductionV2.AUTO,
    name='mean_absolute_error'
)
loss = mean(abs(y_true - y_pred))
Standalone usage:
y_true = [[0., 1.], [0., 0.]]y_pred = [[1., 1.], [1., 0.]]# Using 'auto'/'sum_over_batch_size' reduction type.mae = tf.keras.losses.MeanAbsoluteError()mae(y_true, y_pred).numpy()0.5
# Calling with 'sample_weight'.mae(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy()0.25
# Using 'sum' reduction type.mae = tf.keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.SUM)mae(y_true, y_pred).numpy()1.0
# Using 'none' reduction type.mae = tf.keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.NONE)mae(y_true, y_pred).numpy()array([0.5, 0.5], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.MeanAbsoluteError())
| Args | |
|---|---|
| reduction | Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults toSUM_OVER_BATCH_SIZE. When used under atf.distribute.Strategy, except viaModel.compile()andModel.fit(), usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial
for more details. | 
| name | Optional name for the instance. Defaults to 'mean_absolute_error'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A keras.losses.Lossinstance. | 
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. Ifsample_weightis a tensor of size[batch_size],
then the total loss for each sample of the batch is rescaled by the
corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be
broadcasted to this shape), then each loss element ofy_predis
scaled by the corresponding value ofsample_weight. (Note
ondN-1: all loss functions reduce by 1 dimension, usually
axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually
axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. |