tf.keras.metrics.hinge
Stay organized with collections
Save and categorize content based on your preferences.
Computes the hinge loss between y_true
& y_pred
.
tf.keras.metrics.hinge(
y_true, y_pred
)
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)
Standalone usage:
y_true = np.random.choice([-1, 1], size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.hinge(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(),
np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1))
Args |
y_true
|
The ground truth values. y_true values are expected to be -1 or
- If binary (0 or 1) labels are provided they will be converted to -1
or 1. shape =
[batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Hinge loss values. shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.metrics.hinge\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L1909-L1938) |\n\nComputes the hinge loss between `y_true` \\& `y_pred`.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.losses.hinge`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge), [`tf.losses.hinge`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge), [`tf.metrics.hinge`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/hinge)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.losses.hinge\\`, \\`tf.compat.v1.keras.metrics.hinge\\`\n\n\u003cbr /\u003e\n\n tf.keras.metrics.hinge(\n y_true, y_pred\n )\n\n`loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)`\n\n#### Standalone usage:\n\n y_true = np.random.choice([-1, 1], size=(2, 3))\n y_pred = np.random.random(size=(2, 3))\n loss = tf.keras.losses.hinge(y_true, y_pred)\n assert loss.shape == (2,)\n assert np.array_equal(\n loss.numpy(),\n np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1))\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | The ground truth values. `y_true` values are expected to be -1 or \u003cbr /\u003e 1. If binary (0 or 1) labels are provided they will be converted to -1 or 1. shape = `[batch_size, d0, .. dN]`. |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Hinge loss values. shape = `[batch_size, d0, .. dN-1]`. ||\n\n\u003cbr /\u003e"]]