tf.keras.metrics.poisson
Stay organized with collections
Save and categorize content based on your preferences.
Computes the Poisson loss between y_true and y_pred.
tf.keras.metrics.poisson(
y_true, y_pred
)
The Poisson loss is the mean of the elements of the Tensor
y_pred - y_true * log(y_pred)
.
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.poisson(y_true, y_pred)
assert loss.shape == (2,)
y_pred = y_pred + 1e-7
assert np.allclose(
loss.numpy(), np.mean(y_pred - y_true * np.log(y_pred), axis=-1),
atol=1e-5)
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Poisson loss value. shape = [batch_size, d0, .. dN-1] .
|
Raises |
InvalidArgumentError
|
If y_true and y_pred have incompatible shapes.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.metrics.poisson\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/losses.py#L2660-L2693) |\n\nComputes the Poisson loss between y_true and y_pred.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.losses.poisson`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/poisson), [`tf.losses.poisson`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/poisson), [`tf.metrics.poisson`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/poisson)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.losses.poisson\\`, \\`tf.compat.v1.keras.metrics.poisson\\`\n\n\u003cbr /\u003e\n\n tf.keras.metrics.poisson(\n y_true, y_pred\n )\n\nThe Poisson loss is the mean of the elements of the `Tensor`\n`y_pred - y_true * log(y_pred)`.\n\n#### Standalone usage:\n\n y_true = np.random.randint(0, 2, size=(2, 3))\n y_pred = np.random.random(size=(2, 3))\n loss = tf.keras.losses.poisson(y_true, y_pred)\n assert loss.shape == (2,)\n y_pred = y_pred + 1e-7\n assert np.allclose(\n loss.numpy(), np.mean(y_pred - y_true * np.log(y_pred), axis=-1),\n atol=1e-5)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|----------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`. |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Poisson loss value. shape = `[batch_size, d0, .. dN-1]`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|------------------------|----------------------------------------------------|\n| `InvalidArgumentError` | If `y_true` and `y_pred` have incompatible shapes. |\n\n\u003cbr /\u003e"]]