View source on GitHub |
Loads a model saved via model.save()
.
tf.keras.saving.load_model(
filepath, custom_objects=None, compile=True, safe_mode=True, **kwargs
)
SavedModel format arguments:
options: Only applies to SavedModel format.
Optional tf.saved_model.LoadOptions
object that specifies
SavedModel loading options.
Returns | |
---|---|
A Keras model instance. If the original model was compiled,
and the argument compile=True is set, then the returned model
will be compiled. Otherwise, the model will be left uncompiled.
|
Example:
model = tf.keras.Sequential([
tf.keras.layers.Dense(5, input_shape=(3,)),
tf.keras.layers.Softmax()])
model.save("model.keras")
loaded_model = tf.keras.saving.load_model("model.keras")
x = tf.random.uniform((10, 3))
assert np.allclose(model.predict(x), loaded_model.predict(x))
Note that the model variables may have different name values
(var.name
property, e.g. "dense_1/kernel:0"
) after being reloaded.
It is recommended that you use layer attributes to
access specific variables, e.g. model.get_layer("dense_1").kernel
.