View source on GitHub |
Time-based interval Threads.
tf.keras.utils.TimedThread(
interval, **kwargs
)
Runs a timed thread every x seconds. It can be used to run a threaded function alongside model training or any other snippet of code.
Examples:
class TimedLogIterations(keras.utils.TimedThread):
def __init__(self, model, interval):
self.model = model
super().__init__(interval)
def on_interval(self):
# Logs Optimizer iterations every x seconds
try:
opt_iterations = self.model.optimizer.iterations.numpy()
print(f"Epoch: {epoch}, Optimizer Iterations: {opt_iterations}")
except Exception as e:
print(str(e)) # To prevent thread from getting killed
# `start` and `stop` the `TimerThread` manually. If the `on_interval` call
# requires access to `model` or other objects, override `__init__` method.
# Wrap it in a `try-except` to handle exceptions and `stop` the thread run.
timed_logs = TimedLogIterations(model=model, interval=5)
timed_logs.start()
try:
model.fit(...)
finally:
timed_logs.stop()
# Alternatively, run the `TimedThread` in a context manager
with TimedLogIterations(model=model, interval=5):
model.fit(...)
# If the timed thread instance needs access to callback events,
# subclass both `TimedThread` and `Callback`. Note that when calling
# `super`, they will have to called for each parent class if both of them
# have the method that needs to be run. Also, note that `Callback` has
# access to `model` as an attribute and need not be explictly provided.
class LogThreadCallback(
keras.utils.TimedThread, keras.callbacks.Callback
):
def __init__(self, interval):
self._epoch = 0
keras.utils.TimedThread.__init__(self, interval)
keras.callbacks.Callback.__init__(self)
def on_interval(self):
if self.epoch:
opt_iter = self.model.optimizer.iterations.numpy()
logging.info(f"Epoch: {self._epoch}, Opt Iteration: {opt_iter}")
def on_epoch_begin(self, epoch, logs=None):
self._epoch = epoch
with LogThreadCallback(interval=5) as thread_callback:
# It's required to pass `thread_callback` to also `callbacks` arg of
# `model.fit` to be triggered on callback events.
model.fit(..., callbacks=[thread_callback])
Methods
is_alive
is_alive()
Returns True if thread is running. Otherwise returns False.
on_interval
@abc.abstractmethod
on_interval()
User-defined behavior that is called in the thread.
start
start()
Creates and starts the thread run.
stop
stop()
Stops the thread run.
__enter__
__enter__()
__exit__
__exit__(
*args, **kwargs
)