tf.linalg.eig
Stay organized with collections
Save and categorize content based on your preferences.
Computes the eigen decomposition of a batch of matrices.
View aliases
Main aliases
tf.eig
tf.linalg.eig(
tensor, name=None
)
The eigenvalues
and eigenvectors for a non-Hermitian matrix in general are complex. The
eigenvectors are not guaranteed to be linearly independent.
Computes the eigenvalues and right eigenvectors of the innermost
N-by-N matrices in tensor
such that
tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i]
, for i=0...N-1.
Args |
tensor
|
Tensor of shape [..., N, N] . Only the lower triangular part of
each inner inner matrix is referenced.
|
name
|
string, optional name of the operation.
|
Returns |
e
|
Eigenvalues. Shape is [..., N] . The eigenvalues are not necessarily
ordered.
|
v
|
Eigenvectors. Shape is [..., N, N] . The columns of the inner most
matrices contain eigenvectors of the corresponding matrices in tensor
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.linalg.eig\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.13.1/tensorflow/python/ops/linalg_ops.py#L378-L407) |\n\nComputes the eigen decomposition of a batch of matrices.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.eig`](https://www.tensorflow.org/api_docs/python/tf/linalg/eig)\n\n\u003cbr /\u003e\n\n tf.linalg.eig(\n tensor, name=None\n )\n\nThe eigenvalues\nand eigenvectors for a non-Hermitian matrix in general are complex. The\neigenvectors are not guaranteed to be linearly independent.\n\nComputes the eigenvalues and right eigenvectors of the innermost\nN-by-N matrices in `tensor` such that\n`tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i]`, for i=0...N-1.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|-----------------------------------------------------------------------------------------------------------|\n| `tensor` | `Tensor` of shape `[..., N, N]`. Only the lower triangular part of each inner inner matrix is referenced. |\n| `name` | string, optional name of the operation. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----|---------------------------------------------------------------------------------------------------------------------------------------------|\n| `e` | Eigenvalues. Shape is `[..., N]`. The eigenvalues are not necessarily ordered. |\n| `v` | Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most matrices contain eigenvectors of the corresponding matrices in `tensor` |\n\n\u003cbr /\u003e"]]