tf.ones_like
Stay organized with collections
Save and categorize content based on your preferences.
Creates a tensor of all ones that has the same shape as the input.
tf.ones_like(
input, dtype=None, name=None
)
See also tf.ones
.
Given a single tensor (tensor
), this operation returns a tensor of the
same type and shape as tensor
with all elements set to 1. Optionally,
you can use dtype
to specify a new type for the returned tensor.
For example:
tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.ones_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 1, 1],
[1, 1, 1]], dtype=int32)>
Args |
input
|
A Tensor .
|
dtype
|
A type for the returned Tensor . Must be float16 , float32 ,
float64 , int8 , uint8 , int16 , uint16 , int32 , int64 ,
complex64 , complex128 , bool or string .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor with all elements set to one.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.ones_like\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.13.1/tensorflow/python/ops/array_ops.py#L3015-L3048) |\n\nCreates a tensor of all ones that has the same shape as the input. \n\n tf.ones_like(\n input, dtype=None, name=None\n )\n\nSee also [`tf.ones`](../tf/ones).\n\nGiven a single tensor (`tensor`), this operation returns a tensor of the\nsame type and shape as `tensor` with all elements set to 1. Optionally,\nyou can use `dtype` to specify a new type for the returned tensor.\n\n#### For example:\n\n tensor = tf.constant([[1, 2, 3], [4, 5, 6]])\n tf.ones_like(tensor)\n \u003ctf.Tensor: shape=(2, 3), dtype=int32, numpy=\n array([[1, 1, 1],\n [1, 1, 1]], dtype=int32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. |\n| `dtype` | A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` with all elements set to one. ||\n\n\u003cbr /\u003e"]]