|  View source on GitHub | 
Quantizes then dequantizes a tensor.
tf.quantization.quantize_and_dequantize_v2(
    input,
    input_min,
    input_max,
    signed_input=True,
    num_bits=8,
    range_given=False,
    round_mode='HALF_TO_EVEN',
    name=None,
    narrow_range=False,
    axis=None
)
Updates the gradient definition for quantization that is outside the range to be 0.To simulate the V1 the behavior of tf.quantization.quantize_and_dequantize(...) use tf.grad_pass_through(tf.quantization.quantize_and_dequantize_v2)(...).
Example usage:
def getQuantizeOp(input):
    input_tensor = tf.placeholder(tf.float32, shape=[4, 4])
    net = tf.quantization.quantize_and_dequantize(input,
                                                  input_min=min_threshold,
                                                  input_max=max_threshold,
                                                  range_given=True)
To simulate v1 behavior:
def testDecomposeQuantizeDequantize(self):
    def f(input_tensor):
      return tf.quantization.quantize_and_dequantize_v2(input_tensor,
                                                        input_min = 5.0,
                                                        input_max= -10.0,
                                                        range_given=True)
    input_tensor = tf.placeholder(tf.float32, shape=[4, 4])
    net = tf.grad_pass_through(f)(input_tensor)
| Returns | |
|---|---|
| A Tensor. Each element is the result of quantizing and dequantizing the
corresponding element ofinput. |