tf.raw_ops.BitwiseOr
Stay organized with collections
Save and categorize content based on your preferences.
Elementwise computes the bitwise OR of x
and y
.
tf.raw_ops.BitwiseOr(
x, y, name=None
)
The result will have those bits set, that are set in x
, y
or both. The
computation is performed on the underlying representations of x
and y
.
For example:
import tensorflow as tf
from tensorflow.python.ops import bitwise_ops
dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64,
tf.uint8, tf.uint16, tf.uint32, tf.uint64]
for dtype in dtype_list:
lhs = tf.constant([0, 5, 3, 14], dtype=dtype)
rhs = tf.constant([5, 0, 7, 11], dtype=dtype)
exp = tf.constant([5, 5, 7, 15], dtype=tf.float32)
res = bitwise_ops.bitwise_or(lhs, rhs)
tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
Args |
x
|
A Tensor . Must be one of the following types: int8 , int16 , int32 , int64 , uint8 , uint16 , uint32 , uint64 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.raw_ops.BitwiseOr\n\n\u003cbr /\u003e\n\nElementwise computes the bitwise OR of `x` and `y`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.BitwiseOr`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/BitwiseOr)\n\n\u003cbr /\u003e\n\n tf.raw_ops.BitwiseOr(\n x, y, name=None\n )\n\nThe result will have those bits set, that are set in `x`, `y` or both. The\ncomputation is performed on the underlying representations of `x` and `y`.\n\n#### For example:\n\n import tensorflow as tf\n from tensorflow.python.ops import bitwise_ops\n dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64,\n tf.uint8, tf.uint16, tf.uint32, tf.uint64]\n\n for dtype in dtype_list:\n lhs = tf.constant([0, 5, 3, 14], dtype=dtype)\n rhs = tf.constant([5, 0, 7, 11], dtype=dtype)\n exp = tf.constant([5, 5, 7, 15], dtype=tf.float32)\n\n res = bitwise_ops.bitwise_or(lhs, rhs)\n tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. Must be one of the following types: `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `uint32`, `uint64`. |\n| `y` | A `Tensor`. Must have the same type as `x`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `x`. ||\n\n\u003cbr /\u003e"]]