tf.raw_ops.ExperimentalAutoShardDataset
Stay organized with collections
Save and categorize content based on your preferences.
Creates a dataset that shards the input dataset.
tf.raw_ops.ExperimentalAutoShardDataset(
input_dataset,
num_workers,
index,
output_types,
output_shapes,
auto_shard_policy=0,
name=None
)
Creates a dataset that shards the input dataset by num_workers, returning a
sharded dataset for the index-th worker. This attempts to automatically shard
a dataset by examining the Dataset graph and inserting a shard op before the
inputs to a reader Dataset (e.g. CSVDataset, TFRecordDataset).
This dataset will throw a NotFound error if we cannot shard the dataset
automatically.
Args |
input_dataset
|
A Tensor of type variant .
A variant tensor representing the input dataset.
|
num_workers
|
A Tensor of type int64 .
A scalar representing the number of workers to distribute this dataset across.
|
index
|
A Tensor of type int64 .
A scalar representing the index of the current worker out of num_workers.
|
output_types
|
A list of tf.DTypes that has length >= 1 .
|
output_shapes
|
A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 .
|
auto_shard_policy
|
An optional int . Defaults to 0 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type variant .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.raw_ops.ExperimentalAutoShardDataset\n\n\u003cbr /\u003e\n\nCreates a dataset that shards the input dataset.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.ExperimentalAutoShardDataset`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/ExperimentalAutoShardDataset)\n\n\u003cbr /\u003e\n\n tf.raw_ops.ExperimentalAutoShardDataset(\n input_dataset,\n num_workers,\n index,\n output_types,\n output_shapes,\n auto_shard_policy=0,\n name=None\n )\n\nCreates a dataset that shards the input dataset by num_workers, returning a\nsharded dataset for the index-th worker. This attempts to automatically shard\na dataset by examining the Dataset graph and inserting a shard op before the\ninputs to a reader Dataset (e.g. CSVDataset, TFRecordDataset).\n\nThis dataset will throw a NotFound error if we cannot shard the dataset\nautomatically.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|--------------------------------------------------------------------------------------------------------------|\n| `input_dataset` | A `Tensor` of type `variant`. A variant tensor representing the input dataset. |\n| `num_workers` | A `Tensor` of type `int64`. A scalar representing the number of workers to distribute this dataset across. |\n| `index` | A `Tensor` of type `int64`. A scalar representing the index of the current worker out of num_workers. |\n| `output_types` | A list of `tf.DTypes` that has length `\u003e= 1`. |\n| `output_shapes` | A list of shapes (each a [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`) that has length `\u003e= 1`. |\n| `auto_shard_policy` | An optional `int`. Defaults to `0`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `variant`. ||\n\n\u003cbr /\u003e"]]