tf.raw_ops.MatrixSetDiagV3
Stay organized with collections
Save and categorize content based on your preferences.
Returns a batched matrix tensor with new batched diagonal values.
tf.raw_ops.MatrixSetDiagV3(
input, diagonal, k, align='RIGHT_LEFT', name=None
)
Given input
and diagonal
, this operation returns a tensor with the
same shape and values as input
, except for the specified diagonals of the
innermost matrices. These will be overwritten by the values in diagonal
.
input
has r+1
dimensions [I, J, ..., L, M, N]
. When k
is scalar or
k[0] == k[1]
, diagonal
has r
dimensions [I, J, ..., L, max_diag_len]
.
Otherwise, it has r+1
dimensions [I, J, ..., L, num_diags, max_diag_len]
.
num_diags
is the number of diagonals, num_diags = k[1] - k[0] + 1
.
max_diag_len
is the longest diagonal in the range [k[0], k[1]]
,
max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
The output is a tensor of rank k+1
with dimensions [I, J, ..., L, M, N]
.
If k
is scalar or k[0] == k[1]
:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
input[i, j, ..., l, m, n] ; otherwise
Otherwise,
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
input[i, j, ..., l, m, n] ; otherwise
where d = n - m
, diag_index = k[1] - d
, and
index_in_diag = n - max(d, 0) + offset
.
offset
is zero except when the alignment of the diagonal is to the right.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
and `d >= 0`) or
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
and `d <= 0`)
0 ; otherwise
where diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))
.
For example:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_set_diag(input, diagonal)
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_set_diag(input, diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3)
[6, 5, 8],
[1, 2, 3],
[4, 5, 0]],
[[0, 1, 2],
[5, 6, 4],
[6, 1, 2],
[3, 4, 0]]])
tf.matrix_set_diag(input, diagonals, k = (-1, 2))
==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4)
[4, 2, 5, 1],
[7, 5, 3, 8]],
[[6, 5, 1, 7],
[3, 1, 6, 2],
[7, 4, 2, 4]]]
# LEFT_RIGHT alignment.
diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3)
[6, 5, 8],
[1, 2, 3],
[0, 4, 5]],
[[1, 2, 0],
[5, 6, 4],
[6, 1, 2],
[0, 3, 4]]])
tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="LEFT_RIGHT")
==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4)
[4, 2, 5, 1],
[7, 5, 3, 8]],
[[6, 5, 1, 7],
[3, 1, 6, 2],
[7, 4, 2, 4]]]
Args |
input
|
A Tensor . Rank r+1 , where r >= 1 .
|
diagonal
|
A Tensor . Must have the same type as input .
Rank r when k is an integer or k[0] == k[1] . Otherwise, it has rank r+1 .
k >= 1 .
|
k
|
A Tensor of type int32 .
Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main
diagonal, and negative value means subdiagonals. k can be a single integer
(for a single diagonal) or a pair of integers specifying the low and high ends
of a matrix band. k[0] must not be larger than k[1] .
|
align
|
An optional string from: "LEFT_RIGHT", "RIGHT_LEFT", "LEFT_LEFT", "RIGHT_RIGHT" . Defaults to "RIGHT_LEFT" .
Some diagonals are shorter than max_diag_len and need to be padded. align is
a string specifying how superdiagonals and subdiagonals should be aligned,
respectively. There are four possible alignments: "RIGHT_LEFT" (default),
"LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals
to the right (left-pads the row) and subdiagonals to the left (right-pads the
row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is
the opposite alignment.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.raw_ops.MatrixSetDiagV3\n\n\u003cbr /\u003e\n\nReturns a batched matrix tensor with new batched diagonal values.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.MatrixSetDiagV3`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/MatrixSetDiagV3)\n\n\u003cbr /\u003e\n\n tf.raw_ops.MatrixSetDiagV3(\n input, diagonal, k, align='RIGHT_LEFT', name=None\n )\n\nGiven `input` and `diagonal`, this operation returns a tensor with the\nsame shape and values as `input`, except for the specified diagonals of the\ninnermost matrices. These will be overwritten by the values in `diagonal`.\n\n`input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or\n`k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`.\nOtherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`.\n`num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`.\n`max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`,\n`max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`\n\nThe output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`.\nIf `k` is scalar or `k[0] == k[1]`: \n\n output[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]\n input[i, j, ..., l, m, n] ; otherwise\n\nOtherwise, \n\n output[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] \u003c= d \u003c= k[1]\n input[i, j, ..., l, m, n] ; otherwise\n\nwhere `d = n - m`, `diag_index = k[1] - d`, and\n`index_in_diag = n - max(d, 0) + offset`.\n\n`offset` is zero except when the alignment of the diagonal is to the right. \n\n offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}\n and `d \u003e= 0`) or\n (`align` in {LEFT_RIGHT, RIGHT_RIGHT}\n and `d \u003c= 0`)\n 0 ; otherwise\n\nwhere `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`.\n\n#### For example:\n\n # The main diagonal.\n input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)\n [7, 7, 7, 7],\n [7, 7, 7, 7]],\n [[7, 7, 7, 7],\n [7, 7, 7, 7],\n [7, 7, 7, 7]]])\n diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)\n [4, 5, 6]])\n tf.matrix_set_diag(input, diagonal)\n ==\u003e [[[1, 7, 7, 7], # Output shape: (2, 3, 4)\n [7, 2, 7, 7],\n [7, 7, 3, 7]],\n [[4, 7, 7, 7],\n [7, 5, 7, 7],\n [7, 7, 6, 7]]]\n\n # A superdiagonal (per batch).\n tf.matrix_set_diag(input, diagonal, k = 1)\n ==\u003e [[[7, 1, 7, 7], # Output shape: (2, 3, 4)\n [7, 7, 2, 7],\n [7, 7, 7, 3]],\n [[7, 4, 7, 7],\n [7, 7, 5, 7],\n [7, 7, 7, 6]]]\n\n # A band of diagonals.\n diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3)\n [6, 5, 8],\n [1, 2, 3],\n [4, 5, 0]],\n [[0, 1, 2],\n [5, 6, 4],\n [6, 1, 2],\n [3, 4, 0]]])\n tf.matrix_set_diag(input, diagonals, k = (-1, 2))\n ==\u003e [[[1, 6, 9, 7], # Output shape: (2, 3, 4)\n [4, 2, 5, 1],\n [7, 5, 3, 8]],\n [[6, 5, 1, 7],\n [3, 1, 6, 2],\n [7, 4, 2, 4]]]\n\n # LEFT_RIGHT alignment.\n diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3)\n [6, 5, 8],\n [1, 2, 3],\n [0, 4, 5]],\n [[1, 2, 0],\n [5, 6, 4],\n [6, 1, 2],\n [0, 3, 4]]])\n tf.matrix_set_diag(input, diagonals, k = (-1, 2), align=\"LEFT_RIGHT\")\n ==\u003e [[[1, 6, 9, 7], # Output shape: (2, 3, 4)\n [4, 2, 5, 1],\n [7, 5, 3, 8]],\n [[6, 5, 1, 7],\n [3, 1, 6, 2],\n [7, 4, 2, 4]]]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Rank `r+1`, where `r \u003e= 1`. |\n| `diagonal` | A `Tensor`. Must have the same type as `input`. Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. `k \u003e= 1`. |\n| `k` | A `Tensor` of type `int32`. Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. |\n| `align` | An optional `string` from: `\"LEFT_RIGHT\", \"RIGHT_LEFT\", \"LEFT_LEFT\", \"RIGHT_RIGHT\"`. Defaults to `\"RIGHT_LEFT\"`. Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: \"RIGHT_LEFT\" (default), \"LEFT_RIGHT\", \"LEFT_LEFT\", and \"RIGHT_RIGHT\". \"RIGHT_LEFT\" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses \"LEFT_RIGHT\", which is the opposite alignment. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `input`. ||\n\n\u003cbr /\u003e"]]