tf.raw_ops.PrefetchDataset
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Creates a dataset that asynchronously prefetches elements from input_dataset.
tf.raw_ops.PrefetchDataset(
    input_dataset,
    buffer_size,
    output_types,
    output_shapes,
    slack_period=0,
    legacy_autotune=True,
    buffer_size_min=0,
    metadata='',
    name=None
)
| Args | 
|---|
| input_dataset | A Tensorof typevariant. | 
| buffer_size | A Tensorof typeint64.
The maximum number of elements to buffer in an iterator over
this dataset. | 
| output_types | A list of tf.DTypesthat has length>= 1. | 
| output_shapes | A list of shapes (each a tf.TensorShapeor list ofints) that has length>= 1. | 
| slack_period | An optional int. Defaults to0. | 
| legacy_autotune | An optional bool. Defaults toTrue. | 
| buffer_size_min | An optional int. Defaults to0. | 
| metadata | An optional string. Defaults to"". | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensorof typevariant. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2023-10-06 UTC.
  
  
  
    
      [null,null,["Last updated 2023-10-06 UTC."],[],[]]