Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
tf.raw_ops.SparseTensorDenseMatMul(
    a_indices,
    a_values,
    a_shape,
    b,
    adjoint_a=False,
    adjoint_b=False,
    name=None
)
No validity checking is performed on the indices of A.  However, the following
input format is recommended for optimal behavior:
if adjoint_a == false:
  A should be sorted in lexicographically increasing order.  Use SparseReorder
  if you're not sure.
if adjoint_a == true:
  A should be sorted in order of increasing dimension 1 (i.e., "column major"
  order instead of "row major" order).
| Args | 
|---|
| a_indices | A Tensor. Must be one of the following types:int32,int64.
2-D.  Theindicesof theSparseTensor, size[nnz, 2]Matrix. | 
| a_values | A Tensor.
1-D.  Thevaluesof theSparseTensor, size[nnz]Vector. | 
| a_shape | A Tensorof typeint64.
1-D.  Theshapeof theSparseTensor, size[2]Vector. | 
| b | A Tensor. Must have the same type asa_values.
2-D.  A dense Matrix. | 
| adjoint_a | An optional bool. Defaults toFalse.
Use the adjoint of A in the matrix multiply.  If A is complex, this
is transpose(conj(A)).  Otherwise it's transpose(A). | 
| adjoint_b | An optional bool. Defaults toFalse.
Use the adjoint of B in the matrix multiply.  If B is complex, this
is transpose(conj(B)).  Otherwise it's transpose(B). | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensor. Has the same type asa_values. |