Perform quantization on Tensor input.
tf.raw_ops.UniformQuantize(
    input,
    scales,
    zero_points,
    Tout,
    quantization_min_val,
    quantization_max_val,
    quantization_axis=-1,
    name=None
)
Given input, scales and zero_points, performs quantization using the formula:
quantized_data = floor(input_data * (1.0f / scale) + 0.5f) + zero_point
| Args | |
|---|---|
| input | A Tensor. Must be one of the following types:float32.
Must be a Tensor of Tin. | 
| scales | A Tensorof typefloat32.
The float value(s) to use as scale(s) to quantizeinput.
Must be a scalar Tensor if quantization_axis is -1 (per-tensor quantization), otherwise 1D Tensor of size (input.dim_size(quantization_axis),) (per-axis quantization). | 
| zero_points | A Tensorof typeint32.
The int32 value(s) to use as zero_point(s) to quantizeinput.
Same shape condition as scales. | 
| Tout | A tf.DTypefrom:tf.qint8, tf.qint32.
The type of output Tensor. A tf.DType from: tf.float32 | 
| quantization_min_val | An int.
The quantization min value to quantizeinput.
The purpose of this attribute is typically (but not limited to) to indicate narrow range, where this is set to:(Tin lowest) + 1if narrow range, and(Tin lowest)otherwise.
For example, if Tin is qint8, this is set to -127 if narrow range quantized or -128 if not. | 
| quantization_max_val | An int.
The quantization max value to quantizeinput.
The purpose of this attribute is typically (but not limited to) indicate narrow range, where this is set to:(Tout max)for both narrow range and not narrow range.
For example, if Tin is qint8, this is set to 127. | 
| quantization_axis | An optional int. Defaults to-1.
Indicates the dimension index of the tensor where per-axis quantization is applied for the slices along that dimension.
If set to -1 (default), this indicates per-tensor quantization. Otherwise, it must be set within range [0, input.dims()). | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typeTout. |