tf.raw_ops.UniqueWithCountsV2
Stay organized with collections
Save and categorize content based on your preferences.
Finds unique elements along an axis of a tensor.
tf.raw_ops.UniqueWithCountsV2(
x,
axis,
out_idx=tf.dtypes.int32
,
name=None
)
This operation either returns a tensor y
containing unique elements
along the axis
of a tensor. The returned unique elements is sorted
in the same order as they occur along axis
in x
.
This operation also returns a tensor idx
and a tensor count
that are the same size as the number of the elements in x
along the
axis
dimension. The idx
contains the index in the unique output y
and the count
contains the count in the unique output y
.
In other words, for an 1-D
tensor x
with `axis = None:
y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]
For example:
x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis = [0])
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]
For a 2-D
tensor x
with axis = 0
:
x = tf.constant([[1, 0, 0],
[1, 0, 0],
[2, 0, 0]])
y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis=[0])
y ==> [[1, 0, 0],
[2, 0, 0]]
idx ==> [0, 0, 1]
count ==> [2, 1]
For a 2-D
tensor x
with axis = 1
:
x = tf.constant([[1, 0, 0],
[1, 0, 0],
[2, 0, 0]])
y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis=[1])
y ==> [[1, 0],
[1, 0],
[2, 0]]
idx ==> [0, 1, 1]
count ==> [1, 2]
Args |
x
|
A Tensor . A Tensor .
|
axis
|
A Tensor . Must be one of the following types: int32 , int64 .
A Tensor of type int32 (default: None). The axis of the Tensor to
find the unique elements.
|
out_idx
|
An optional tf.DType from: tf.int32, tf.int64 . Defaults to tf.int32 .
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (y, idx, count).
|
y
|
A Tensor . Has the same type as x .
|
idx
|
A Tensor of type out_idx .
|
count
|
A Tensor of type out_idx .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.raw_ops.UniqueWithCountsV2\n\n\u003cbr /\u003e\n\nFinds unique elements along an axis of a tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.UniqueWithCountsV2`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/UniqueWithCountsV2)\n\n\u003cbr /\u003e\n\n tf.raw_ops.UniqueWithCountsV2(\n x,\n axis,\n out_idx=../../tf/dtypes#int32,\n name=None\n )\n\nThis operation either returns a tensor `y` containing unique elements\nalong the `axis` of a tensor. The returned unique elements is sorted\nin the same order as they occur along `axis` in `x`.\nThis operation also returns a tensor `idx` and a tensor `count`\nthat are the same size as the number of the elements in `x` along the\n`axis` dimension. The `idx` contains the index in the unique output `y`\nand the `count` contains the count in the unique output `y`.\nIn other words, for an `1-D` tensor `x` with \\`axis = None:\n\n`y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]`\n\n#### For example:\n\n x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])\n y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis = [0])\n y ==\u003e [1, 2, 4, 7, 8]\n idx ==\u003e [0, 0, 1, 2, 2, 2, 3, 4, 4]\n count ==\u003e [2, 1, 3, 1, 2]\n\nFor a `2-D` tensor `x` with `axis = 0`: \n\n x = tf.constant([[1, 0, 0],\n [1, 0, 0],\n [2, 0, 0]])\n y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis=[0])\n y ==\u003e [[1, 0, 0],\n [2, 0, 0]]\n idx ==\u003e [0, 0, 1]\n count ==\u003e [2, 1]\n\nFor a `2-D` tensor `x` with `axis = 1`: \n\n x = tf.constant([[1, 0, 0],\n [1, 0, 0],\n [2, 0, 0]])\n y, idx, count = tf.raw_ops.UniqueWithCountsV2(x=x, axis=[1])\n y ==\u003e [[1, 0],\n [1, 0],\n [2, 0]]\n idx ==\u003e [0, 1, 1]\n count ==\u003e [1, 2]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. A `Tensor`. |\n| `axis` | A `Tensor`. Must be one of the following types: `int32`, `int64`. A `Tensor` of type `int32` (default: None). The axis of the Tensor to find the unique elements. |\n| `out_idx` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.int32, tf.int64`. Defaults to [`tf.int32`](../../tf#int32). |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---------|---------------------------------------|\n| A tuple of `Tensor` objects (y, idx, count). ||\n| `y` | A `Tensor`. Has the same type as `x`. |\n| `idx` | A `Tensor` of type `out_idx`. |\n| `count` | A `Tensor` of type `out_idx`. |\n\n\u003cbr /\u003e"]]