View source on GitHub
|
Applies softmax to a batched N-D SparseTensor.
tf.sparse.softmax(
sp_input, name=None
)
The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2), and with indices sorted in the canonical lexicographic
order.
This op is equivalent to applying the normal tf.nn.softmax() to each
innermost logical submatrix with shape [B, C], but with the catch that the
implicitly zero elements do not participate. Specifically, the algorithm is
equivalent to:
(1) Applies tf.nn.softmax() to a densified view of each innermost
submatrix with shape [B, C], along the size-C dimension;
(2) Masks out the original implicitly-zero locations;
(3) Renormalizes the remaining elements.
Hence, the SparseTensor result has exactly the same non-zero indices and
shape.
Example using a 3-D SparseTensor:
st = tf.sparse.from_dense([[[0., np.e],[1., 0.]],[[np.e, 0.],[np.e, np.e]]])res = tf.sparse.softmax(st)res.indices<tf.Tensor: shape=(5, 3), dtype=int64, numpy=array([[0, 0, 1],[0, 1, 0],[1, 0, 0],[1, 1, 0],[1, 1, 1]])>res.values<tf.Tensor: ... numpy=array([1. , 1. , 1. , 0.5, 0.5], dtype=float32)>res.dense_shape<tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 2, 2])>tf.sparse.to_dense(res)<tf.Tensor: shape=(2, 2, 2), dtype=float32, numpy=array([[[0. , 1. ],[1. , 0. ]],[[1. , 0. ],[0.5, 0.5]]], dtype=float32)>
Args | |
|---|---|
sp_input
|
N-D SparseTensor, where N >= 2.
|
name
|
optional name of the operation. |
Returns | |
|---|---|
output
|
N-D SparseTensor representing the results.
|
View source on GitHub