Returns a Dataset of feature dictionaries from Example protos.
tf.compat.v1.data.experimental.make_batched_features_dataset(
    file_pattern,
    batch_size,
    features,
    reader=None,
    label_key=None,
    reader_args=None,
    num_epochs=None,
    shuffle=True,
    shuffle_buffer_size=10000,
    shuffle_seed=None,
    prefetch_buffer_size=None,
    reader_num_threads=None,
    parser_num_threads=None,
    sloppy_ordering=False,
    drop_final_batch=False
)
If label_key argument is provided, returns a Dataset of tuple
comprising of feature dictionaries and label.
Example:
serialized_examples = [
  features {
    feature { key: "age" value { int64_list { value: [ 0 ] } } }
    feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
    feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } }
  },
  features {
    feature { key: "age" value { int64_list { value: [] } } }
    feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
    feature { key: "kws" value { bytes_list { value: [ "sports" ] } } }
  }
]
We can use arguments:
features: {
  "age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
  "gender": FixedLenFeature([], dtype=tf.string),
  "kws": VarLenFeature(dtype=tf.string),
}
And the expected output is:
{
  "age": [[0], [-1]],
  "gender": [["f"], ["f"]],
  "kws": SparseTensor(
    indices=[[0, 0], [0, 1], [1, 0]],
    values=["code", "art", "sports"]
    dense_shape=[2, 2]),
}
Args | 
file_pattern
 | 
List of files or patterns of file paths containing
Example records. See tf.io.gfile.glob for pattern rules.
 | 
batch_size
 | 
An int representing the number of records to combine
in a single batch.
 | 
features
 | 
A dict mapping feature keys to FixedLenFeature or
VarLenFeature values. See tf.io.parse_example.
 | 
reader
 | 
A function or class that can be
called with a filenames tensor and (optional) reader_args and returns
a Dataset of Example tensors. Defaults to tf.data.TFRecordDataset.
 | 
label_key
 | 
(Optional) A string corresponding to the key labels are stored in
tf.Examples. If provided, it must be one of the features key,
otherwise results in ValueError.
 | 
reader_args
 | 
Additional arguments to pass to the reader class.
 | 
num_epochs
 | 
Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. Defaults to None.
 | 
shuffle
 | 
A boolean, indicates whether the input should be shuffled. Defaults
to True.
 | 
shuffle_buffer_size
 | 
Buffer size of the ShuffleDataset. A large capacity
ensures better shuffling but would increase memory usage and startup time.
 | 
shuffle_seed
 | 
Randomization seed to use for shuffling.
 | 
prefetch_buffer_size
 | 
Number of feature batches to prefetch in order to
improve performance. Recommended value is the number of batches consumed
per training step. Defaults to auto-tune.
 | 
reader_num_threads
 | 
Number of threads used to read Example records. If >1,
the results will be interleaved. Defaults to 1.
 | 
parser_num_threads
 | 
Number of threads to use for parsing Example tensors
into a dictionary of Feature tensors. Defaults to 2.
 | 
sloppy_ordering
 | 
If True, reading performance will be improved at
the cost of non-deterministic ordering. If False, the order of elements
produced is deterministic prior to shuffling (elements are still
randomized if shuffle=True. Note that if the seed is set, then order
of elements after shuffling is deterministic). Defaults to False.
 | 
drop_final_batch
 | 
If True, and the batch size does not evenly divide the
input dataset size, the final smaller batch will be dropped. Defaults to
False.
 | 
Returns | 
A dataset of dict elements, (or a tuple of dict elements and label).
Each dict maps feature keys to Tensor or SparseTensor objects.
 | 
Raises | 
TypeError
 | 
If reader is of the wrong type.
 | 
ValueError
 | 
If label_key is not one of the features keys.
 |