Global max pooling operation for spatial data.
View aliases
Main aliases
tf.keras.layers.GlobalMaxPooling2D
See Migration guide for more details.
`tf.compat.v1.keras.layers.GlobalMaxPool2D`, `tf.compat.v1.keras.layers.GlobalMaxPooling2D`
tf.keras.layers.GlobalMaxPool2D(
data_format=None, keepdims=False, **kwargs
)
Examples:
input_shape = (2, 4, 5, 3)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalMaxPool2D()(x)
print(y.shape)
(2, 3)
Args | |
---|---|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, height, width) .
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json .
If you never set it, then it will be "channels_last".
|
keepdims
|
A boolean, whether to keep the spatial dimensions or not.
If keepdims is False (default), the rank of the tensor is reduced
for spatial dimensions.
If keepdims is True , the spatial dimensions are retained with
length 1.
The behavior is the same as for tf.reduce_max or np.max .
|
Input shape | |
---|---|
|
Output shape | |
---|---|
|