View source on GitHub
  
 | 
Initializer that generates tensors initialized to 1.
tf.compat.v1.keras.initializers.Ones(
    dtype=tf.dtypes.float32
)
Migrate to TF2
This API is compatible with TF2 behavior and tf.function, and can be
migrated immediately with tf.keras.initializers.ones.
Before:
>>> initializer = tf.compat.v1.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>
After:
>>> initializer = tf.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>
Description
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config
 | 
A Python dictionary. It will typically be the output of
get_config.
 | 
| Returns | |
|---|---|
| An Initializer instance. | 
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape
 | 
Shape of the tensor. | 
dtype
 | 
Optional dtype of the tensor. If not provided use the initializer dtype. | 
partition_info
 | 
Optional information about the possible partitioning of a tensor. | 
    View source on GitHub