Returns a mask tensor representing the first N positions of each cell.
tf.sequence_mask(
    lengths,
    maxlen=None,
    dtype=tf.dtypes.bool,
    name=None
)
If lengths has shape [d_1, d_2, ..., d_n] the resulting tensor mask has
dtype dtype and shape [d_1, d_2, ..., d_n, maxlen], with
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
Examples:
tf.sequence_mask([1, 3, 2], 5)  # [[True, False, False, False, False],
                                #  [True, True, True, False, False],
                                #  [True, True, False, False, False]]
tf.sequence_mask([[1, 3],[2,0]])  # [[[True, False, False],
                                  #   [True, True, True]],
                                  #  [[True, True, False],
                                  #   [False, False, False]]]
Args | 
lengths
 | 
integer tensor, all its values <= maxlen.
 | 
maxlen
 | 
scalar integer tensor, size of last dimension of returned tensor.
Default is the maximum value in lengths.
 | 
dtype
 | 
output type of the resulting tensor.
 | 
name
 | 
name of the op.
 | 
Returns | 
A mask tensor of shape lengths.shape + (maxlen,), cast to specified dtype.
 | 
Raises | 
ValueError
 | 
if maxlen is not a scalar.
 |