Depthwise separable 2D convolution.
Inherits From: Layer, Module
tf.keras.layers.SeparableConv2D(
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format=None,
    dilation_rate=(1, 1),
    depth_multiplier=1,
    activation=None,
    use_bias=True,
    depthwise_initializer='glorot_uniform',
    pointwise_initializer='glorot_uniform',
    bias_initializer='zeros',
    depthwise_regularizer=None,
    pointwise_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    depthwise_constraint=None,
    pointwise_constraint=None,
    bias_constraint=None,
    **kwargs
)
Separable convolutions consist of first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes the resulting
output channels. The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as
a way to factorize a convolution kernel into two smaller kernels,
or as an extreme version of an Inception block.
Args | 
filters
 | 
Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
 | 
kernel_size
 | 
An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
 | 
strides
 | 
An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions. Current implementation only supports equal
length strides in the row and column dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate value != 1.
 | 
padding
 | 
one of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input.
 | 
data_format
 | 
A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch_size, height, width, channels) while channels_first
corresponds to inputs with shape
(batch_size, channels, height, width).
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json.
If you never set it, then it will be "channels_last".
 | 
dilation_rate
 | 
An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
 | 
depth_multiplier
 | 
The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier.
 | 
activation
 | 
Activation function to use.
If you don't specify anything, no activation is applied
(see keras.activations).
 | 
use_bias
 | 
Boolean, whether the layer uses a bias vector.
 | 
depthwise_initializer
 | 
An initializer for the depthwise convolution kernel
(see keras.initializers). If None, then the default initializer
('glorot_uniform') will be used.
 | 
pointwise_initializer
 | 
An initializer for the pointwise convolution kernel
(see keras.initializers). If None, then the default initializer
('glorot_uniform') will be used.
 | 
bias_initializer
 | 
An initializer for the bias vector. If None, the default
initializer ('zeros') will be used (see keras.initializers).
 | 
depthwise_regularizer
 | 
Regularizer function applied to
the depthwise kernel matrix (see keras.regularizers).
 | 
pointwise_regularizer
 | 
Regularizer function applied to
the pointwise kernel matrix (see keras.regularizers).
 | 
bias_regularizer
 | 
Regularizer function applied to the bias vector
(see keras.regularizers).
 | 
activity_regularizer
 | 
Regularizer function applied to
the output of the layer (its "activation")
(see keras.regularizers).
 | 
depthwise_constraint
 | 
Constraint function applied to
the depthwise kernel matrix
(see keras.constraints).
 | 
pointwise_constraint
 | 
Constraint function applied to
the pointwise kernel matrix
(see keras.constraints).
 | 
bias_constraint
 | 
Constraint function applied to the bias vector
(see keras.constraints).
 | 
 | 
4D tensor with shape:
(batch_size, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(batch_size, rows, cols, channels) if data_format='channels_last'.
 | 
Output shape | 
4D tensor with shape:
(batch_size, filters, new_rows, new_cols) if
data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters) if
data_format='channels_last'.  rows and cols values might have changed
due to padding.
 | 
Returns | 
A tensor of rank 4 representing
activation(separableconv2d(inputs, kernel) + bias).
 | 
Raises | 
ValueError
 | 
if padding is "causal".
 | 
Methods
convolution_op
View source
convolution_op(
    inputs, kernel
)