tf.feature_column.sequence_numeric_column
Stay organized with collections
Save and categorize content based on your preferences.
Returns a feature column that represents sequences of numeric data.
tf.feature_column.sequence_numeric_column(
key,
shape=(1,),
default_value=0.0,
dtype=tf.dtypes.float32
,
normalizer_fn=None
)
Example:
temperature = sequence_numeric_column('temperature')
columns = [temperature]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)
rnn_layer = tf.keras.layers.RNN(rnn_cell)
outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
Args |
key
|
A unique string identifying the input features.
|
shape
|
The shape of the input data per sequence id. E.g. if shape=(2,) ,
each example must contain 2 * sequence_length values.
|
default_value
|
A single value compatible with dtype that is used for
padding the sparse data into a dense Tensor .
|
dtype
|
The type of values.
|
normalizer_fn
|
If not None , a function that can be used to normalize the
value of the tensor after default_value is applied for parsing.
Normalizer function takes the input Tensor as its argument, and returns
the output Tensor . (e.g. lambda x: (x - 3.0) / 4.2). Please note that
even though the most common use case of this function is normalization, it
can be used for any kind of Tensorflow transformations.
|
Returns |
A SequenceNumericColumn .
|
Raises |
TypeError
|
if any dimension in shape is not an int.
|
ValueError
|
if any dimension in shape is not a positive integer.
|
ValueError
|
if dtype is not convertible to tf.float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-23 UTC.
[null,null,["Last updated 2023-03-23 UTC."],[],[],null,["# tf.feature_column.sequence_numeric_column\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.11.1/tensorflow/python/feature_column/sequence_feature_column.py#L308-L368) |\n\nReturns a feature column that represents sequences of numeric data.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.feature_column.sequence_numeric_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/sequence_numeric_column)\n\n\u003cbr /\u003e\n\n tf.feature_column.sequence_numeric_column(\n key,\n shape=(1,),\n default_value=0.0,\n dtype=../../tf/dtypes#float32,\n normalizer_fn=None\n )\n\n#### Example:\n\n temperature = sequence_numeric_column('temperature')\n columns = [temperature]\n\n features = tf.io.parse_example(..., features=make_parse_example_spec(columns))\n sequence_feature_layer = SequenceFeatures(columns)\n sequence_input, sequence_length = sequence_feature_layer(features)\n sequence_length_mask = tf.sequence_mask(sequence_length)\n\n rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)\n rnn_layer = tf.keras.layers.RNN(rnn_cell)\n outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `key` | A unique string identifying the input features. |\n| `shape` | The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. |\n| `default_value` | A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. |\n| `dtype` | The type of values. |\n| `normalizer_fn` | If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `SequenceNumericColumn`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------------------------------------------|\n| `TypeError` | if any dimension in shape is not an int. |\n| `ValueError` | if any dimension in shape is not a positive integer. |\n| `ValueError` | if `dtype` is not convertible to [`tf.float32`](../../tf#float32). |\n\n\u003cbr /\u003e"]]