View source on GitHub
|
Adjust the saturation of RGB images by a random factor.
tf.image.random_saturation(
image, lower, upper, seed=None
)
Equivalent to adjust_saturation() but uses a saturation_factor randomly
picked in the interval [lower, upper).
Usage Example:
x = [[[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]],[[7.0, 8.0, 9.0],[10.0, 11.0, 12.0]]]tf.image.random_saturation(x, 5, 10)<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=array([[[ 0. , 1.5, 3. ],[ 0. , 3. , 6. ]],[[ 0. , 4.5, 9. ],[ 0. , 6. , 12. ]]], dtype=float32)>
For producing deterministic results given a seed value, use
tf.image.stateless_random_saturation. Unlike using the seed param
with tf.image.random_* ops, tf.image.stateless_random_* ops guarantee the
same results given the same seed independent of how many times the function is
called, and independent of global seed settings (e.g. tf.random.set_seed).
Returns | |
|---|---|
Adjusted image(s), same shape and DType as image.
|
Raises | |
|---|---|
ValueError
|
if upper <= lower or if lower < 0.
|
View source on GitHub