|  View source on GitHub | 
Initializer that generates tensors initialized to 0.
tf.compat.v1.keras.initializers.Zeros(
    dtype=tf.dtypes.float32
)
Migrate to TF2
tf.compat.v1.zeros_initializer is compatible with eager execution
and tf.function.
To migrate to TF2, please use tf.zerosinitializer instead. The dtype
argument in <a href="../../../../../tf/compat/v1/keras/initializers/Zeros#init_">tf.compat.v1.zerosinitializer.init_() does not exist in
tf.zerosinitializer.init_(). However, you can specify the dtype in
__call__() in both cases.
Structural Mapping to TF2
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32)
variable = tf.Variable(initializer(shape=[3, 3]))
After:
initializer = tf.zeros_initializer()
variable = tf.Variable(initializer(shape=[3, 3], dtype=tf.float32))
How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note | 
|---|---|---|
| dtype | dtype | In __call__()method | 
| partition_info | - | ( __call__arg in TF1) Not supported | 
Before & After Usage Example
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32)tf.Variable(initializer(shape=[3])).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3])).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)initializer = tf.compat.v1.zeros_initializer()tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)
After:
initializer = tf.zeros_initializer()tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()array([0., 0., 0.], dtype=float32)tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()array([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]], dtype=float32)
Description
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary. It will typically be the output of get_config. | 
| Returns | |
|---|---|
| An Initializer instance. | 
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. If not provided use the initializer dtype. | 
| partition_info | Optional information about the possible partitioning of a tensor. |