|  View source on GitHub | 
Instantiates the RegNetX016 architecture.
tf.keras.applications.regnet.RegNetX016(
    model_name='regnetx016',
    include_top=True,
    include_preprocessing=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'
)
| Reference | |
|---|---|
| 
 | 
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
The naming of models is as follows: RegNet<block_type><flops> where
block_type is one of (X, Y) and flops signifies hundred million
floating point operations. For example RegNetY064 corresponds to RegNet with
Y block and 6.4 giga flops (64 hundred million flops).
| Args | |
|---|---|
| include_top | Whether to include the fully-connected layer at the top of the network. Defaults to True. | 
| weights | One of None(random initialization),"imagenet"(pre-training on ImageNet), or the path to the weights
file to be loaded. Defaults to"imagenet". | 
| input_tensor | Optional Keras tensor
(i.e. output of layers.Input())
to use as image input for the model. | 
| input_shape | Optional shape tuple, only to be specified
if include_topis False.
It should have exactly 3 inputs channels. | 
| pooling | Optional pooling mode for feature extraction
when include_topisFalse. Defaults to None.
 | 
| classes | Optional number of classes to classify images
into, only to be specified if include_topis True, and
if noweightsargument is specified. Defaults to 1000 (number of
ImageNet classes). | 
| classifier_activation | A stror callable. The activation function to use
on the "top" layer. Ignored unlessinclude_top=True. Setclassifier_activation=Noneto return the logits of the "top" layer.
Defaults to"softmax".
When loading pretrained weights,classifier_activationcan only
beNoneor"softmax". | 
| Returns | |
|---|---|
| A keras.Modelinstance. |