|  View source on GitHub | 
Initializer that generates tensors with a normal distribution.
Inherits From: Initializer
tf.keras.initializers.RandomNormal(
    mean=0.0, stddev=0.05, seed=None
)
Also available via the shortcut function
tf.keras.initializers.random_normal.
Examples:
# Standalone usage:initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config(). | 
| Returns | |
|---|---|
| An Initializerinstance. | 
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, **kwargs
)
Returns a tensor object initialized to random normal values.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. Only floating point types are
supported. If not specified, tf.keras.backend.floatx()is used,
which default tofloat32unless you configured it otherwise (viatf.keras.backend.set_floatx(float_dtype)) | 
| **kwargs | Additional keyword arguments. |