Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Inherits From: Layer, Module
  View aliases
  
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.layers.Cropping3D`
tf.keras.layers.Cropping3D(
    cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)
Examples:
input_shape = (2, 28, 28, 10, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
print(y.shape)
(2, 24, 20, 6, 3)
| Args | 
|---|
| cropping | Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints. 
If int: the same symmetric cropping
is applied to depth, height, and width.If tuple of 3 ints: interpreted as two different
symmetric cropping values for depth, height, and width:
(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop).If tuple of 3 tuples of 2 ints: interpreted as
((left_dim1_crop, right_dim1_crop), (left_dim2_crop,
right_dim2_crop), (left_dim3_crop, right_dim3_crop)) | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3).
When unspecified, usesimage_data_formatvalue found in your Keras config file at~/.keras/keras.json(if exists) else 'channels_last'.
Defaults to 'channels_last'. | 
|  | 
|---|
| 5D tensor with shape: 
If data_formatis"channels_last":(batch_size, first_axis_to_crop, second_axis_to_crop,
third_axis_to_crop, depth)If data_formatis"channels_first":(batch_size, depth, first_axis_to_crop, second_axis_to_crop,
third_axis_to_crop) | 
| Output shape | 
|---|
| 5D tensor with shape: 
If data_formatis"channels_last":(batch_size, first_cropped_axis, second_cropped_axis,
third_cropped_axis, depth)If data_formatis"channels_first":(batch_size, depth, first_cropped_axis, second_cropped_axis,
third_cropped_axis) |