Depthwise 2D convolution.
Inherits From: Layer, Module
  View aliases
  
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.layers.DepthwiseConv2D`
tf.keras.layers.DepthwiseConv2D(
    kernel_size,
    strides=(1, 1),
    padding='valid',
    depth_multiplier=1,
    data_format=None,
    dilation_rate=(1, 1),
    activation=None,
    use_bias=True,
    depthwise_initializer='glorot_uniform',
    bias_initializer='zeros',
    depthwise_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    depthwise_constraint=None,
    bias_constraint=None,
    **kwargs
)
Depthwise convolution is a type of convolution in which each input channel
is convolved with a different kernel (called a depthwise kernel). You can
understand depthwise convolution as the first step in a depthwise separable
convolution.
It is implemented via the following steps:
- Split the input into individual channels.
- Convolve each channel with an individual depthwise kernel with
depth_multiplieroutput channels.
- Concatenate the convolved outputs along the channels axis.
Unlike a regular 2D convolution, depthwise convolution does not mix
information across different input channels.
The depth_multiplier argument determines how many filter are applied to
one input channel. As such, it controls the amount of output channels that
are generated per input channel in the depthwise step.
| Args | 
|---|
| kernel_size | An integer or tuple/list of 2 integers, specifying the height
and width of the 2D convolution window. Can be a single integer to
specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 2 integers, specifying the strides of
the convolution along the height and width. Can be a single integer to
specify the same value for all spatial dimensions. Current
implementation only supports equal length strides in row and
column dimensions. Specifying any stride value != 1 is incompatible
with specifying any dilation_ratevalue !=1. | 
| padding | one of 'valid'or'same'(case-insensitive)."valid"means
no padding."same"results in padding with zeros evenly to the
left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| depth_multiplier | The number of depthwise convolution output channels for
each input channel. The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier. | 
| data_format | A string, one of channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height,
width, channels)whilechannels_firstcorresponds to inputs with
shape(batch_size, channels, height, width). When unspecified, usesimage_data_formatvalue found in your Keras config file at~/.keras/keras.json(if exists) else 'channels_last'.
Defaults to 'channels_last'. | 
| dilation_rate | An integer or tuple/list of 2 integers, specifying the
dilation rate to use for dilated convolution. Currently, specifying any dilation_ratevalue != 1 is incompatible with specifying anystridesvalue != 1. | 
| activation | Activation function to use. If you don't specify anything, no
activation is applied (see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| depthwise_initializer | Initializer for the depthwise kernel matrix (see keras.initializers). If None, the default initializer
('glorot_uniform') will be used. | 
| bias_initializer | Initializer for the bias vector (see keras.initializers). If None, the default initializer ('zeros') will
be used. | 
| depthwise_regularizer | Regularizer function applied to the depthwise
kernel matrix (see keras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector (see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to the output of the
layer (its 'activation') (see keras.regularizers). | 
| depthwise_constraint | Constraint function applied to the depthwise kernel
matrix (see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector (see keras.constraints). | 
|  | 
|---|
| 4D tensor with shape: [batch_size, channels, rows, cols]if
  data_format='channels_first'
or 4D tensor with shape:[batch_size, rows, cols, channels]if
  data_format='channels_last'. | 
| Output shape | 
|---|
| 4D tensor with shape: [batch_size, channels * depth_multiplier, new_rows,
new_cols]ifdata_format='channels_first'or 4D tensor with shape:[batch_size,
new_rows, new_cols, channels * depth_multiplier]ifdata_format='channels_last'.rowsandcolsvalues might have
changed due to padding. | 
| Returns | 
|---|
| A tensor of rank 4 representing activation(depthwiseconv2d(inputs, kernel) + bias). | 
| Raises | 
|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. | 
Methods
convolution_op
View source
convolution_op(
    inputs, kernel
)