tf.keras.layers.multiply
Stay organized with collections
Save and categorize content based on your preferences.
Functional interface to the Multiply
layer.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.layers.multiply`
tf.keras.layers.multiply(
inputs, **kwargs
)
Example:
x1 = np.arange(3.0)
x2 = np.arange(3.0)
tf.keras.layers.multiply([x1, x2])
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 1., 4.], ...)>
Usage in a functional model:
input1 = tf.keras.layers.Input(shape=(16,))
x1 = tf.keras.layers.Dense(
8, activation='relu')(input1) #shape=(None, 8)
input2 = tf.keras.layers.Input(shape=(32,))
x2 = tf.keras.layers.Dense(
8, activation='relu')(input2) #shape=(None, 8)
out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8)
out = tf.keras.layers.Dense(4)(out)
model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
Args |
inputs
|
A list of input tensors.
|
**kwargs
|
Standard layer keyword arguments.
|
Returns |
A tensor, the element-wise product of the inputs.
|