Given a python function func wrap this function as an operation in a
TensorFlow function. func must take numpy arrays as its arguments and
return numpy arrays as its outputs.
The following example creates a TensorFlow graph with np.sinh() as an
operation in the graph:
defmy_numpy_func(x):# x will be a numpy array with the contents of the input to the# tf.functionreturnnp.sinh(x)@tf.function(input_signature=[tf.TensorSpec(None,tf.float32)])deftf_function(input):y=tf.numpy_function(my_numpy_func,[input],tf.float32)returny*ytf_function(tf.constant(1.))<tf.Tensor:shape=(),dtype=float32,numpy=1.3810978>
Calling tf.numpy_function will acquire the Python Global Interpreter Lock
(GIL) that allows only one thread to run at any point in time. This will
preclude efficient parallelization and distribution of the execution of the
program. Therefore, you are discouraged to use tf.numpy_function outside
of prototyping and experimentation.
The body of the function (i.e. func) will not be serialized in a
tf.SavedModel. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.
The operation must run in the same address space as the Python program
that calls tf.numpy_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.numpy_function you must pin the created
operation to a device in that server (e.g. using with tf.device():).
Since the function takes numpy arrays, you cannot take gradients
through a numpy_function. If you require something that is differentiable,
please consider using tf.py_function.
Args
func
A Python function, which accepts numpy.ndarray objects as arguments
and returns a list of numpy.ndarray objects (or a single
numpy.ndarray). This function must accept as many arguments as there are
tensors in inp, and these argument types will match the corresponding
tf.Tensor objects in inp. The returns numpy.ndarrays must match the
number and types defined Tout.
Important Note: Input and output numpy.ndarrays of func are not
guaranteed to be copies. In some cases their underlying memory will be
shared with the corresponding TensorFlow tensors. In-place modification
or storing func input or return values in python datastructures
without explicit (np.)copy can have non-deterministic consequences.
A list or tuple of tensorflow data types or a single tensorflow data
type if there is only one, indicating what func returns.
stateful
(Boolean.) Setting this argument to False tells the runtime to
treat the function as stateless, which enables certain optimizations.
A function is stateless when given the same input it will return the
same output and have no side effects; its only purpose is to have a
return value.
The behavior for a stateful function with the stateful argument False
is undefined. In particular, caution should be taken when
mutating the input arguments as this is a stateful operation.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.numpy_function\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.13.1/tensorflow/python/ops/script_ops.py#L684-L768) |\n\nWraps a python function and uses it as a TensorFlow op.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.numpy_function`](https://www.tensorflow.org/api_docs/python/tf/numpy_function)\n\n\u003cbr /\u003e\n\n tf.numpy_function(\n func, inp, Tout, stateful=True, name=None\n )\n\nGiven a python function `func` wrap this function as an operation in a\nTensorFlow function. `func` must take numpy arrays as its arguments and\nreturn numpy arrays as its outputs.\n\nThe following example creates a TensorFlow graph with `np.sinh()` as an\noperation in the graph: \n\n def my_numpy_func(x):\n # x will be a numpy array with the contents of the input to the\n # tf.function\n return np.sinh(x)\n @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)])\n def tf_function(input):\n y = tf.numpy_function(my_numpy_func, [input], tf.float32)\n return y * y\n tf_function(tf.constant(1.))\n \u003ctf.Tensor: shape=(), dtype=float32, numpy=1.3810978\u003e\n\nComparison to [`tf.py_function`](../tf/py_function):\n[`tf.py_function`](../tf/py_function) and [`tf.numpy_function`](../tf/numpy_function) are very similar, except that\n[`tf.numpy_function`](../tf/numpy_function) takes numpy arrays, and not [`tf.Tensor`](../tf/Tensor)s. If you want the\nfunction to contain `tf.Tensors`, and have any TensorFlow operations executed\nin the function be differentiable, please use [`tf.py_function`](../tf/py_function).\n| **Note:** We recommend to avoid using [`tf.numpy_function`](../tf/numpy_function) outside of prototyping and experimentation due to the following known limitations:\n\n- Calling [`tf.numpy_function`](../tf/numpy_function) will acquire the Python Global Interpreter Lock\n (GIL) that allows only one thread to run at any point in time. This will\n preclude efficient parallelization and distribution of the execution of the\n program. Therefore, you are discouraged to use [`tf.numpy_function`](../tf/numpy_function) outside\n of prototyping and experimentation.\n\n- The body of the function (i.e. `func`) will not be serialized in a\n `tf.SavedModel`. Therefore, you should not use this function if you need to\n serialize your model and restore it in a different environment.\n\n- The operation must run in the same address space as the Python program\n that calls [`tf.numpy_function()`](../tf/numpy_function). If you are using distributed\n TensorFlow, you must run a [`tf.distribute.Server`](../tf/distribute/Server) in the same process as the\n program that calls [`tf.numpy_function`](../tf/numpy_function) you must pin the created\n operation to a device in that server (e.g. using `with tf.device():`).\n\n- Currently [`tf.numpy_function`](../tf/numpy_function) is not compatible with XLA. Calling\n [`tf.numpy_function`](../tf/numpy_function) inside [`tf.function(jit_compile=True)`](../tf/function) will raise an\n error.\n\n- Since the function takes numpy arrays, you cannot take gradients\n through a numpy_function. If you require something that is differentiable,\n please consider using tf.py_function.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `func` | A Python function, which accepts `numpy.ndarray` objects as arguments and returns a list of `numpy.ndarray` objects (or a single `numpy.ndarray`). This function must accept as many arguments as there are tensors in `inp`, and these argument types will match the corresponding [`tf.Tensor`](../tf/Tensor) objects in `inp`. The returns `numpy.ndarray`s must match the number and types defined `Tout`. Important Note: Input and output `numpy.ndarray`s of `func` are not guaranteed to be copies. In some cases their underlying memory will be shared with the corresponding TensorFlow tensors. In-place modification or storing `func` input or return values in python datastructures without explicit (np.)copy can have non-deterministic consequences. |\n| `inp` | A list of [`tf.Tensor`](../tf/Tensor) objects. |\n| `Tout` | A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns. |\n| `stateful` | (Boolean.) Setting this argument to False tells the runtime to treat the function as stateless, which enables certain optimizations. A function is stateless when given the same input it will return the same output and have no side effects; its only purpose is to have a return value. The behavior for a stateful function with the `stateful` argument False is undefined. In particular, caution should be taken when mutating the input arguments as this is a stateful operation. |\n| `name` | (Optional) A name for the operation. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Single or list of [`tf.Tensor`](../tf/Tensor) which `func` computes. ||\n\n\u003cbr /\u003e"]]