View source on GitHub
|
Stacks dynamic partitions of a Tensor or RaggedTensor.
tf.ragged.stack_dynamic_partitions(
data, partitions, num_partitions, name=None
)
Returns a RaggedTensor output with num_partitions rows, where the row
output[i] is formed by stacking all slices data[j1...jN] such that
partitions[j1...jN] = i. Slices of data are stacked in row-major
order.
If num_partitions is an int (not a Tensor), then this is equivalent to
tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions)).
Example:
data = ['a', 'b', 'c', 'd', 'e']partitions = [ 3, 0, 2, 2, 3]num_partitions = 5tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)<tf.RaggedTensor [[b'b'], [], [b'c', b'd'], [b'a', b'e'], []]>
Returns | |
|---|---|
A RaggedTensor containing the stacked partitions. The returned tensor
has the same dtype as data, and its shape is
[num_partitions, (D)] + data.shape[partitions.rank:], where (D) is a
ragged dimension whose length is the number of data slices stacked for
each partition.
|
View source on GitHub